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Universitá degli Studi di Milano-Bicocca

Milan, Italy
arcelli@disco.unimib.it

Abstract—In the last decade, data security has become a
primary concern for an increasing amount of companies around
the world. Protecting the customers privacy is now at the core
of many businesses operating in any kind of market. Thus,
the demand for new technologies to safeguard user data and
prevent data breaches has increased accordingly. In this work, we
investigate a machine learning-based approach to automatically
extract sources and sinks from arbitrary Java libraries. Our
method exploits several different features based on semantic,
syntactic, intra-procedural dataflow and class-hierarchy traits
embedded into the bytecode to distinguish sources and sinks.
The performed experiments show that, under certain conditions
and after some preprocessing, sources and sinks across different
libraries share common characteristics that allow a machine
learning model to distinguish them from the other library
methods. The prototype model achieved remarkable results of
86% accuracy and 81% F-measure on our validation set of
roughly 600 methods.

Index Terms—Java, Static Analysis, Sources, Sink, Machine
Learning

Research paper – This article has been submitted to the Research
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I. INTRODUCTION

A. Overview

In the last decade, data security has become a primary
concern for an increasing number of companies around the
world. Protecting the customer’s privacy is now at the core of
many businesses operating in any kind of market. Thus, the
demand for new technologies to safeguard user data and pre-
vent data breaches has increased accordingly. The impact of an
hypothetical data breach is not restricted only to the company
under attack, but also affects their customers, providers and
users. Indeed, according to IBM, the potential cost of cyber-
crime to the global community is around 500 million dollars,
while the average data breach cost per company is 3.62 million
dollars [1].

Security vulnerabilities detection is one of the most impor-
tant focal points of the whole matter. A secure software can
guarantee a higher level of protection of the data it handles,
preventing several attacks that might damage the economic
stability of a company.

B. Tracking and measuring security vulnerabilities

The presented work aims at enhancing a particular technique
of static analysis [2] known as Taint Analysis, or Information
Flow Analysis [3], a popular method that consists in checking
which variables have been modified by untrusted user input.
Usually, all user input can be dangerous if it is not properly
checked.

In general, the goal of Taint Analysis is to ensure that ma-
licious input does not reach any possibly vulnerable function
call. Dangerous input sources are usually referred to as data
sources, while vulnerable function calls, or method invoca-
tions, are referred to as data sinks. Therefore, Taint Analysis’
main goal is to find dataflow paths connecting a source with
at least one sink. Each path represents a vulnerability in
the application under analysis. To fix such vulnerabilities,
malicious input can be sanitised by scanning untrusted input
and neutralise, or remove, malicious characters.

The vulnerabilities detected by Taint Analysis share the
same base idea: (a) inject malicious data into sensible data
sinks to gain access to restricted areas of the application; (b)
execute remote commands on the application’s server; (c) leak
personal information belonging to a single, or a group, of
users of the application; or manipulate the behaviour of the
application to exploit a specific victim in performing restricted
operations.

C. Motivation

Taint Analysis can be computed statically [4] or dynami-
cally [5]. Both approaches exploit a list of data sources and
sinks to discover unsafe data paths. Usually, the list is provided
as input before starting the analysis. The completeness of
such a list is vital. If a sink is missing, several flows will
remain undetected and could be exploited by an attacker to
inject malicious code. The same occurs if a source is missing:
unchecked data may enter the application and reach a sink.

Existing analysis tools, both static and dynamic, focus on
a handful of hand-picked sources and sinks, and can thus be
circumvented by malicious applications with ease [6]. There
are several different issues with such an approach to select
sources and sinks:



• big applications have thousands of methods that could
be sources or sinks, requiring a lot of human time to
complete a single list;

• new versions of the application may have modified the
APIs, requiring to recompile or update the list;

• hand-picking sources and sinks is an error-prone task,
especially when dealing with a huge amount of methods;

• the process is hardly scalable and, in some cases, requires
consulting several different information sources before
correctly assigning a tag.

In the presented work, we investigate a machine learning
approach to automatically identify malicious data sources and
sensitive data sinks in arbitrary Java libraries in order to
achieve the following goals:

1) Study the distinctive traits, or features, of data sources
and data sinks in arbitrary Java libraries that would allow
a machine learning model to accurately classify them.

2) Create a tool for automatically extracting data sources
and data sinks from arbitrary Java libraries that is
flexible and easy to use.

3) Test and validate the performance of such a tool with
real-world Java libraries.

D. Challenges

The problem addressed in this work presents a series of
challenges that one should overcome in order to produce a
complete solution to the original problem. Such challenges
include:
• Cover several different types of injections, from SQL

injection to log forging and XPath injection. This is non-
trivial, so we restricted the addressed vulnerability types
to the most important ones1:

– OS Command Injection (CWE-78);
– Log Forging (CWE-117);
– Path Manipulation (CWE-73);
– SQL Injection (CWE-89);
– XPath Injection (CWE-91);
– XSS Injection (CWE-79).

However, the possibility to extend the types of data
sources and sinks that the model could recognise was
an additional crucial feature that we wanted to support.

• Generalise the approach so it is able to handle any
arbitrary Java library that one might need to analyse.
This implies that no library-specific cue can be explicitly
exploited to complete the classification task.

E. Structure

The paper is organized as follows: in Section II, the main
work on which our work is based and the differences between
the two are presented. In Section III, the proposed approach
is introduced along with the main definitions necessary to
formally define the classification model and the feature classes
that the model uses to classify the methods. Section IV is

1In parenthesis, MITRE’s Common Weakness Enumeration for each vul-
nerability. Available at https://cwe.mitre.org/.

organised into two subsections: Section IV-A presents the
classification model selection and other secondary results,
while Section IV-B presents the obtained results. Section V
reports an in-depth analysis of the contribution of a set of
features to the overall classification and briefly describes the
previous versions of the proposed approach. Next, Section
VI presents possible issues, limitations and weaknesses of
both our study and model. In the end, Section VII concludes
the paper and explores some possible future developments to
address the current gaps in the approach.

II. RELATED WORK

In this section, we briefly introduce the paper on which the
presented work is based and highlight the differences between
the two approaches and the problems addressed.

In 2013 Rasthofer et al. [6] presented an approach for
automatically extracting the list of sources and sinks from
the Android operating system. They used a machine learning
approach to classify and categorise all of the 110.000 public
methods of the Android Framework into sources and sinks.
The tool developed is called SuSi and is available as an open
source software2.

Rasthofer et al. achieved a noteworthy result of over 90%
precision and recall on the training set using ten-fold cross-
validation. They also validated SuSi on methods that had never
been seen by the model and achieved almost 100% precision
and recall [6], using Google Glass and Google Chromecast
APIs as a validation set. Further details on SuSi, as well as
on data source and data sinks, are also available [7].

Comparing the two approaches, the main noticeable differ-
ence is that SuSi is designed to only recognise sources and
sinks from the Android Framework, whilst we aim to achieve
the same goal but on a more general level, trying to classify
methods from generic Java libraries. The semantics resilient in
the Android’s bytecode have been explicitly exploited by SuSi,
allowing interfaces, abstract classes and naming conventions
to be used to create ad-hoc features. Using the same strategy
for generic Java libraries is much more difficult since it is
not possible to automatically deduce key interfaces, abstract
classes and naming conventions precisely to exploit for feature
calculation. Nevertheless, we model these characteristics by
defining the concept of Resource and redefining the concept
of Resource Method from [6], namely Java’s key interfaces
and classes for I/O operations3. Another difference lies in the
validation approach we undertook with our tool. We decided
to validate our tool using a validation set created from a much
larger sampling pool than the one used by Rasthofer et al. [6].
In fact, we validated our approach on a set of methods that
has been sampled from a completely different set of libraries
than the one used to sample the training set.

Further works by Arzt and Rasthofer [4] have used the
results produced by SuSi as input for their Taint Analysis tool
specifically designed for the Android Framework.

2See www.blogs.uni-paderborn.de/sse/tools/susi.
3The precise and complete definition will be presented in Section III-B.

https://cwe.mitre.org/
www.blogs.uni-paderborn.de/sse/tools/susi


Fig. 1. A general view of the proposed approach.

In the domain of dynamic analysis, data sources and data
sinks have been used by Gibler et al. [8] to develop an
approach to dynamically detect potential leaks of private
information.

In our case, the tool was developed to be integrated in CAST
Software’s4 security analysis tool, in order to automate the
manual step of adding sources and sinks for the different Java
libraries internally developed by their customers.

III. THE PROPOSED APPROACH

A. General description

The classification of data sources and data sinks is per-
formed by analysing the bytecode of each method present in
the libraries provided as input by the user. The model uses a
combination of semantic and syntactic cues to assign to each
method an adequate tag. As Figure 1 shows, the analysis is a
two-fold process composed of the following phases:

1) Preprocessing: a special set of classes, named Re-
sources5, and methods, named Resource Methods, are
identified and extracted from the input JAR files using
the additional information present in the resource de-
scription (Figure 1). Next, for each method, a set of
features is computed.

2) Classification: a machine learning model is used to
classify every given method as:
• Sink: the class that identifies data sinks;
• Source: the class that identifies data sources;
• Mixed: a special class used when a method has both

the behaviour of a source and a sink;
• None: the class that identifies methods that do not

perform any I/O operation.
The final output of the model is a list containing the classifi-
cation for each method contained in the given Java libraries.

As a final regard, the technologies used to implement
our approach are: (1) the Soot Framework [9] for extracting
information from the Java Bytecode of the JARs, and (2) the
WEKA Data Mining Framework [10] for the machine learning
part involving the classification process.

B. Definitions

Modelling the I/O operations of the Java environment is a
key step in interpreting the nature of the analysed methods.
However, describing how the approach models the different

4Check out https://www.castsoftware.com/ for more information.
5See Section III-B for a detailed description.

information available in the input JARs requires us to introduce
some terminology. Thus, we present the list of definitions
necessary to model I/O operations that are based on the work
performed by [6], which were extended to better fit the needs
of our approach:

Definition 1. A Resource is an entity E on which a process is
able to perform input and output operations with the external
environment.

Some examples of Resources are a file, a database or a web
protocol. Java programs model resources using classes and
interfaces, thus:

Definition 2. A Resource Class (RC) is a class C ∈ Σ that
embodies I/O operations on one or multiple resources E.

where Σ, called Scene6, is the set of all classes under
analysis. An example of a resource class is java.io.File
Reader. Note that Resource Classes are not necessarily
bound to belong to the Java Framework only; they can also
be classes defined in the library under analysis.

Definition 3. The method m ∈ C is a Resource Method (RM)
if C ∈ Σ is a class that implements (or inherits) I/O operations
from a Resource Class R ∈ Σ. Additionally, the name prefix
of m must be in P = PI ∪PT ∪PM . Note that it may be that
C = R.

P is the union of the prefix sets, where each element of such
sets is a commonly used prefix by input methods (PI ), sink
methods (PT ), or mixed methods (PM ). For brevity’s sake,
we won’t extensively enumerate the elements of each Px, but
some example of the elements of such sets are read, get, and
execute. The elements of these sets have been selected based
on the work of Rasthofer et al. [6] and heuristically during the
development of the tool used to test the approach.

Before continuing with the next definition, we would like
to note that Resource Methods could be seen as root sources
and sinks that are going to be invoked by other methods in
the library which will read or write data from them.

Finally:

Definition 4. A data source (or input) method is a declaration
or an implementation of a method that has at least one ingoing
dataflow interaction from a Resource Method m.

A data sink (or sink) method is a declaration or an
implementation of a method that has at least one outgoing
dataflow interaction to a Resource Method m.

Declarations are considered sources or sinks because imple-
menting classes will probably implement a data source or data
sink behaviour. All Resource Methods are thus either sources
or sinks.

C. Resource Modeling

Modelling resources is not a trivial task. In fact, our
approach does not fully address this aspect of the problem. The

6We adopt the same nomenclature used by Vallée-Rai et al. in [9].

https://www.castsoftware.com/


main issue with resource classes is that they can be defined
by the developers of a library, thus every library might have
its very own set of resource classes which cannot be modelled
a priori.

We adopted a partial workaround to this issue by compiling
a brief list of well-known resource classes from the Java
Framework – around 30 between classes and interfaces. At
analysis-time, we extend the list using inheritance to extract
from the current scene under analysis all the subclasses
inheriting from or implementing any of the initial elements of
the list. The resulting list is the initial set of resource classes
used in the rest of the analysis. User-defined resource classes
that do not inherit from or implement any class in the initial list
are thus undetectable. To address this limitation, we propose
a possible solution in Section VII-B.

The list has been divided into categories according to the
type of operation performed by the classes. The categories
reflect the CWEs mentioned in Section I-D. The advantage of
a category-based approach is that new classes can be added to
the model without further changes in the model (like retraining
the machine learning model), including adding elements at
run-time, before calculating the features for each method. The
addition of new categories will require additional changes
though.

D. The features used by the machine learning model

The underlying Machine Learning model classifies the data
through a set of roughly 100 features of different types. The
features are based on syntactic and semantic aspects of the Java
software development process, such as naming conventions,
redundancies, regularities and coding styles, as well as more
technical aspects of each method analyzed.

As noted by Rasthofer et al., a single feature alone will
not give enough information to any algorithm to correctly
distinguish between the different categories. However, by
instantiating several features from a set of feature classes, a
fairly precise model can be trained [6]. The feature classes
are:
Method prefix The method starts with one of the prefixes in
P . Usually input methods tend to use prefixes like get or
read, whereas sink methods use prefixes like set, put or
write.

Invokes a RM The method invokes a RM whose name starts
with a prefix in P . These features are based on the same
assumption as the previous one.

Return type The return type of the method is of a certain
type (or a subtype of a RC). Typically, input methods
have a return value that is an object or an array, whereas
sink methods often return void.

Declaring class’ name contains The name of the declaring
class of the method contains a specific substring or prefix.
Normally, classes that expose I/O operations may contain
some special keywords, such as file, http, sql or similar.

The number of parameters Simply counts the number of
parameters. Sinks usually have at least one parameter,
while sources may have zero (data is returned via the

Fig. 2. Summary figure of the feature categories used to classify a method.

return construct) or more (data is returned via one or
more parameter objects).

Paremeters’ type The parameters are of certain types. Meth-
ods that accept as parameters Resource Classes (RC), or
other special types, may perform a specific I/O opera-
tions.

Dataflow from parameters The method’s parameters flow
through its body until reaching a RM or this object.
Since a RM represents I/O operations, dataflow from
parameters to a RM or this are typical of sinks;

Dataflow from RM The RM’s return value flows through its
body until reaching the return value, this object, or to
any of the method’s parameters. Dataflow from RMs to
this or method’s parameters or to the return statement
usually hints at a source.

Inherits or implements a RC The declaring class of the
methods inherits from, or implements, a Resource Class,
pointing at a possible correlation between the declaring
class of the method, the RC and the type of the RC.

Some features might sound naı̈ve at first, like the Method
prefix one, but it turns out that they are among the ones
that correlate the most with the correct classification of the
methods, and used in combination with the other features they
become more effective [6].

In Figure 2 we have summarized some of the feature classes
used by the model to classify a method.

In addition to the feature classes mentioned above, the
model also considers a user-assigned category for the re-
source classes, special keywords and prefixes defined in the
resource description file (see Figure 1). Such categories are
additional features that help the model to better generalise
on unseen samples. An example of category (or feature) is
fileParamRCategoryFeature, which checks whether a
method has a file-related resource class among its parameters.
The categories used by the model can be added, removed and
edited by the user to customise the model according to its
needs of detection. The default categories are: general, file,
log, web, xml, db, and gui. Categories are formally defined in
the next section.



E. The model

So far, we have described how the resources are modelled
and what the features that we use to feed the methods to a
classifier are. In this section we formally introduce the model
that completely defines our approach.

Definition 5. Let a model for classifying sources and sinks be
defined as a tuple U = 〈C,R, k,P,W, w〉, where:
• C = {c1, c2, ..., cn} is the set of resource categories;
• R = {x ∈ Σ | x is a class or interface modeling I/O

operations on a resource } in some scene Σ;
• k : R → C is a map assigning a category to every

resource class;
• P = PI ∪ PM ∪ PT , is the set of prefixes, as defined in

Section III-B;
• W = {x | x is a special keyword};
• w : W → C is a map assigning a category to each

keyword;

Note that the model is not tied with the current scene Σ by
default. The binding with a particular scene Σ will redefine R
as R′ = R ∩ Σ, since only resource classes from the current
scene can be used to model the I/O.

Definition 6. Let f : Σ′ → D be a feature function that
encodes a particular characteristic of a method m ∈ Σ′ as
d ∈ D, where D ⊂ (N ∪ {Undefined}). Then, a feature set
F is a set of some, unique, feature functions

F = {f | f is a feature function}

where Σ′ is the set of all methods declared by all the classes
contained in Σ. A feature set F encodes each classification
instance (method) in a feature space Dn, where n = |F|, by
applying each feature function to such an instance7. In other
words, a feature set can be seen as a function

F : Σ′ → Dn

that encodes a method m ∈ Σ′ into an element d =
(d1, d2, ..., dn) from the vector space Dn such that di =
fi(m), fi ∈ F , 1 ≤ i ≤ n. The advantage of defining a feature
set as a set is that set notation can be used to easily define
the functions composing the feature sets by only defining the
classes of features.

For those who would like to dive into the very details of
F , we report all the features, and the notation used to define
them, in Appendix A.

Feature sets can thus be associated with a source and sink
validation model through the set of functions that define them
and, therefore, encode methods into vectors d, which can be
fed to a generic machine learning classifier C.

Figure 3 depicts the complete model, from resource mod-
elling to classification. Note how the mapping functions k and
w encapsulate the actual resources and keywords from the
feature set FU . This mapping is extremely important to avoid
the classifier directly depending on specific elements of R and

7In our case, D = {0, 1, Undefined}.

Fig. 3. The Source and Sink Classification Model (SSCM).

W . Additionally, note how R is depending on the scene Σ for
its definition since resource classes must be found in the scene
in order to be usable. Generally speaking, the figure shows the
encoding of a method m ∈ Σ′ into the vector d using all the
features defined in FU .

The advantages of the model U are:
• third-party resources can be added to R, helping the

model to correctly recognise more instances without
modifying the feature set and, thus, having no need to
retrain the underlying machine learning model;

• third-party resources can be automatically mined and
added to R as a preprocessing task, giving space to
further automation of the process;

• it preserves a fine-grained representation of the methods,
allowing the model to learn the eventual correlation be-
tween certain categories and some prefixes or keywords.

The next section reports the results of the validation of the
model on real-world Java libraries.

IV. RESULTS

The results obtained from the designed experiments show
that the model was able to achieve 86% accuracy and 81%
F-measure on our validation set by using a Support Vector
Machine [11] as a classifier. The sections below discuss
the details of the machine learning model selection and the
validation process.

A. Model selection

Choosing and training the right machine learning model for
the classification step required some testing and experiments
with different configurations of models, features and other
small adjustments.

1) Training set creation: Regarding the training set, we
sampled 1079 methods from three different libraries: Apache
Commons IO, Apache STRUTS2 and Apache HTTP Client,
including their dependencies. However, the sampling was
not purely random since that would have created a strong
imbalance between the number of methods that are neither
data sources nor data sinks (None class) and the data sources
and sinks themselves. For such a reason, we created the dataset
by mixing randomly selected methods and keyword-based
selected methods. The former step guaranteed that the class
distribution of the original population was preserved, while the



TABLE I
THE TRAINING SAMPLES DISTRIBUTION.

Class Count Frequency
None 698 64.7
Sink 223 20.7

Source 119 11.0
Mixed 39 3.6
Total 1079 100

latter step guaranteed a sufficient number of training samples
for each class. Moreover, the selection was carefully executed
in such a fashion to avoid any possible bias derived from the
limited set of keywords used for the filtering. The composition
of the training set is reported in Table I.

2) Models considered: The final model used by Rasthofer
et al. [6] in SuSi was an SVM. However, we could not
directly use a Support Vector Machine without checking the
performances of other models since our problem was a little
different from theirs and we also used a slightly different set of
features. Hence, we have tested the following: Decision Tree
[12], Support Vector Machines (SVM) [11], k-Nearest Neigh-
bor (k-NN) [13] and the Gradient Boosting [14] ensemble
model. Additionally, each model was used in combination with
Bagging [15], an ensemble technique to aggregate multiple
versions of the same model to create a single model. To test,
evaluate and select the models, we used the well-known open-
source machine learning framework scikit-learn [16] with
Python 3.6. The main reason behind this choice was that scikit-
learn allows to simply test and evaluate every model with little
effort. However, for the validation of the tool, we decided
to switch from scikit-learn to WEKA [10], since the models
exported through PMML [17] had, on our machines, low-speed
performances when invoked by our Java tool.

3) Model selection process: To select the best model among
the ones considered, we used ten-fold cross-validation [18] to
evaluate the performance of each model. We also performed
a discrete search of the hyperparameters’ space in order to
consider the best instance for each model. The exhaustive
search over the hyperparameters space to find the best model
can produce a lot of overfitted model instances. To avoid using
such instances, we selected the best instance by considering
the F-measure value of each instance on both training and test
cross-validation folds. An F-measure very close to 100% on
the training folds and a test F-measure much lower may indi-
cate overfitting. Thus, we selected the models that generalised
the most over both training and test cross-validation folds.

The metrics8 used to measure the performance of the models
are Accuracy (A), Precision (P ), Recall (R), and F-measure
(F ), defined as follows:

A =
TP + TN

TP + TN + FP + FN
R =

TP

TP + FN

P =
TP

TP + FP
F = 2× R× P

R+ P

8The metrics are defined in the interval [0, 1] and shown in percentage
format. The highest the value the better the performance measured.

TABLE II
AVERAGE PERFORMANCES OF EACH MODEL USING TEN-FOLD

CROSS-VALIDATION. BOLD VALUES ARE THE HIGHEST OF THE COLUMN.

Model Acc. % Prec. % Rec. % F-meas. %
k-NN 88.1 84.6 82.4 82.2
SVM 91.2 84.6 86.1 84.7
Decision Tree 83.1 72.0 70.1 69.8
Grad. Boosting 90.2 88.0 80.8 83.0
Bag. k-NN 88.8 86.1 78.2 80.8
Bag. SVM 92.1 87.0 86.9 86.4
Bag. G. Boost. 90.8 88.0 78.7 81.9

where TN is the number of true negatives, TP is the number
of true positives, FN is the number of false negatives and FP
is the number of false positives.

The scores obtained by the tested models are shown in Table
II and are relative to the best instance for each model tested.

Although Bagging of SVM achieves the best scores overall,
we decided to proceed for the validation tests with an SVM,
due to a simpler configuration of the model and little difference
in the performance achieved.

B. Model validation

The model validation is the final step undertook in assessing
the validity of the proposed approach.

1) Validation strategy: The validation process started with
the design of the experiments to be performed. The first step
was to ensure that the method population used to sample
the validation set was big enough to represent a real-world
scenario, but at the same time, to keep the domain of each
library close enough to the domains included in the training
set. Otherwise, the tool would have been tested for different
capabilities than the ones it was trained for. The criteria used
to select such libraries are:
• Be an open-source library largely employed by the open

source community, so the real-world performance should
not differ from the one measured.

• Include methods and classes from various domains that
are usually at risk of injection attacks, such that the val-
idation set has a higher probability of including methods
that may be effectively used by attackers.

• The library should have more than 500 methods.
The resulting set of libraries used as the sampling population

for the validation set is reported in Table III and contains
over 90.000 methods merged from five different libraries:
Jersey9, Hibernate10, jOOQ11, the commons file I/O package
of Guava12 and Tinylog13. Special attention was paid to avoid
any intersection with the training set.

The second step was to classify all the methods in the
available population and then sample the validation set using a
stratified random sampling that followed the class distribution
of the training set rather than the validation set’s one. There

9Available at https://jersey.github.io/index.html.
10Available at http://hibernate.org/.
11Available at https://www.jooq.org/.
12Available at https://github.com/google/guava.
13Available at https://tinylog.org/.

https://jersey.github.io/index.html
http://hibernate.org/
https://www.jooq.org/
https://github.com/google/guava
https://tinylog.org/


TABLE III
SAMPLING POOL OF THE VALIDATION SET.

Library Version Domain # of Methods
Jersey 2.27 RESTful web-service 10540
Hibernate 5.2.17 Relational Database (SQL) 39024
jOOQ 3.10.7 Relational Database (SQL) 24635
Guava (I/O) 25.0 Common I/O library 700
Tinylog 1.3.2 Logging library 616

Total 90451

TABLE IV
VALIDATION SET COMPOSITION.

Class Jersey Hibernate jOOQ Guava Tinylog Count
None 36 131 94 1 120 382
Sink 7 94 20 4 25 150
Source 16 38 10 18 4 86
Mixed 0 3 0 2 0 5
Total 59 266 124 25 149 623

were two reasons behind this choice: the first one is that it
is a good practice to follow when training machine learning
algorithms; the second one is closely related to the first one
since the class distribution of the validation set is extremely
unbalanced in favor of the None class with over 97% of the
samples, thus by using a stratified random sampling to sample
a reasonable amount of validation samples the other classes
would have ended up with less than 10 elements. Table IV
reports the composition of the resulting validation set as well
as the distribution of the predicted classes for each library.
The stratified random sampling strategy performed had the
main goal to randomly select at least 50 samples per each
class. The Mixed class did not have enough samples, but, it
was not important since it is a meta-class introduced to cope
with special cases.

The next step was a manual and blind inspection of the 623
selected elements, in order to assign a class to each one of
them using the name of the method, its documentation (when
available), the full name of the declaring class and, eventually,
the source code itself as main input.

2) Validation results: The results obtained are reported in
Table V. Overall, the model has performed very well, achiev-
ing 86.2% Accuracy and an average of 85% Recall across the
classes, meaning there was a low number of false negatives.
However, there is a discrepancy between the Precision scores
obtained during testing (84.6%) and during validation (77.9%).
The model has recognised remarkably well the class None, but
there were a lot of false positives with actual class Source and
Sink. This behaviour can be deduced by noticing the slightly
higher number of false negatives of the None class (roughly
50) and the number of false positives in the other two classes.

To get further insights into the actual performances of the
model, we manually inspected the results and observed the
following:
• Some of the None methods, belonging to the Hibernate

library, were classified as Sink because they were actually
logging input parameters into a logger, exposing the
method to possible information leakage. However, this
behaviour was controlled by a debugging flag and, thus,

TABLE V
CLASSIFICATION SCORES PER EACH CLASS OBTAINED ON THE

VALIDATION SET.

Class Precision % Recall % F-Measure %
None 94.0 87.0 90.3
Sink 70.6 83.5 76.5
Source 75.6 86.1 80.5
Mixed 71.4 83.3 76.9
Average 77.9 85.0 81.3

there were no sufficient elements to tag such methods as
Sinks.

• Keywords, prefixes and their relative categories are the
features that help the model to correctly classify methods
with very specific domain behaviour when the model
cannot rely on the dependencies with Resource Classes
and on the dataflow-based features.

As a final note, the validation results suggest that none class
is more easily recognisable than the other classes. Domain-
specific methods are hard to recognise without prior informa-
tion on key resource classes of the library. Further insights
into this aspect will be presented in the next section.

V. DISCUSSION

A. The internals of the model

In this section, we will perform an in-depth analysis of
the category-based features of the model. Such features are
among the novel contributions of this work and thus require
to be further investigated. Also, the effectiveness of prefix,
keyword-based and dataflow features has already been covered
by Rasthofer et al. in their work [6].

To understand how the proposed methodology for extracting
sources and sinks works internally, we can consider Figure 4
from Appendix A, which depicts the matrix of scatterplots of
some of the category-based features of the validation set. This
kind of representation allows visualizing the distribution of the
classes of a dataset in function of the value assumed by a pair
of features.

To explain Figure 4, let us consider the general category
(abbreviated as gen in the figure) as an example, which is
the category containing the general I/O resource classes from
the Java Framework, like for example the input and output
stream abstract classes. The feature genParamCatF uses the
general category to assume a value in D = {Undefined, 1, 2}
when one of the parameters’ type of a method is, inherits, or
implements from a class belonging to the general category.
More precisely, the feature genParamCatF assumes the value
2 if at least one parameters’ type is a “relative” with a class
from the general category; otherwise it assumes value 1, or
Undefined if the method has no parameters. The same idea
is valid for genReturnCatF, but it is applied to the return type.
The concept extends to the other two categories as well – file
and web – and the two related features, which follow a similar
naming pattern14.

14The suffix of each feature name, *CatF, stays for Category Feature.



As it can be observed from Figure 4, there are pairs of
features that discriminate very well between the four classes.
Some pairs perform very well only for a particular class,
whereas other pairs perform better with different classes. Sinks
are discriminated particularly well when genReturnCatF is
equal to 1, i.e. no general I/O type is returned, and genParam-
CatF is 2, i.e. the method receives I/O types as parameters.
Differently, most of the sources are better discriminated when
both of them are equal to 1, but also by other pairs, like
genReturnCatF and fileParamCatF, or genReturnCatF and
webReturnCatF.

A careful reader would have noticed that some None in-
stances have a return type that is both in the web and in
the general categories. Despite this anomaly, caused by a
class implementing interfaces from both categories, we tried
to avoid such circumstances when we designed the categories
since, as can be seen here, it does not increase the recognition
power of the model for the None class, indeed, it only
decreases it.

The overall set of selected features is designed to allow
a machine learning model to learn a discrimination strategy
using different subsets of semantical and syntactical features.
Thus, by combining category-based features with the other
types features, the model is able to identify the correct class
of an instance. Moreover, categories are fully customizable and
resource classes can be added to them at run-time, enabling
the model to easily generalise over methods that use library-
specific resource classes. Finally, the customisable nature of
categories allows the user to apply the model to different
mining purposes, assuming the other features make sense for
the problem of interest.

B. Previous prototypes

The model presented in this work had two predecessor
prototypes that used a different set of features each. We
briefly describe them to give the reader some insights into
the evolution of the presented model.

The first prototype was based on a set of fewer than fifteen
features. However, the domain of such features was not binary,
but multi-valued. Features used a different approach to encode
the prefix type, the dataflow, and the types of the return
value and of the parameters in a very different way from
its successor. Nevertheless, the model’s performance was not
satisfactory. Thus, we decided to switch to a binary feature
space and use more fine-grained features. This change resulted
in a more rigid model with over 200 features that reduced the
capability of the model to generalize over new library types.
However, the performance drastically increased.

Hence, we hypothesised that there must be a sweet spot
between fine-grained and coarse-grained features that are
flexible enough to adapt to different sources and sinks types
while maintaining high performances. Although the model
presented by this work is a step forward in that direction, it
still needs further work to identify the, possibly new, features
that would allow us to move towards that sweet spot.

VI. POSSIBLE ISSUES, LIMITATIONS AND WEAKNESSES

Although the developed tool, as shown in the previous
section, is fairly precise in identifying sources and sinks, there
are still some issues and limits.

1) Large feature space: The number of features is pretty
high, thus it is hard to produce a training set that has a good
number of samples that covers most of the cases. This limit is
very hard to overcome and requires either a large amount of
data, or a reduction of the feature space dimensions without
impacting performance. Moreover, there are also other types
of I/O domains that haven’t been considered in this model,
such as others vulnerable network communication protocols.
Each one of them might use different prefixes, keywords, and
categories which might result in new features to be added to
the model, increasing the amount of learning required.

2) Troublesome tagging: The manual classification of the
methods is a tedious task that requires a lot of time. Indeed,
for each method a researcher has to first find if there is any
available documentation of the current method, then he has
to check that the documentation of the method is relative
to the same version of the method in the dataset, then he
reads the documentation or, if necessary, the code and assigns
a class. Moreover, correctly tagging the methods requires a
deep understanding of all the libraries involved, which is quite
difficult to achieve. Because of these factors, there is a high
risk of introducing errors during the process, which might
affect both the training and the validation process. For such
reasons, we have used only Apache libraries for the training
set since they were easy to understand and well known to the
authors. Such a choice, of course, has limited the generality
of the training set.

3) Obfuscation: The proposed approach assumes that the
libraries under analysis are not obfuscated and all the names
and classes are in English. The former issue cannot be over-
come and the performances of the tool on an obfuscated library
are drastically reduced. Nonetheless, the latter issue can be
overcome by manually switching the resource description to
the necessary language.

4) Flexibility: Another limit with the proposed model is
the inability to change its behaviour, without adding more
training samples, when it misclassifies None methods as non-
None methods (false positives).

5) Validation process: Although our validation process
considers a high amount of methods as a sampling pool, the
number of libraries used might not be enough to completely
ensure a total coverage of all the possible methods types
existing.

Nevertheless, our tests and validation experiments have
shown that the predictions of the tool can be considered
reliable when performed on libraries with a similar domain
of the libraries used in the training set.

VII. CONCLUSION AND FUTURE DEVELOPMENTS

A. Conclusions

In this paper, we have shown that, under certain conditions,
data sources and data sinks exhibit distinctive traits shared



across multiple libraries that allow a machine learning model
to identify them.

The results obtained are very encouraging, and demonstrate
that this kind of approach can be shaped and fine-tuned to
further increase the recognition accuracy of the model.

We believe that a similar approach, properly modified, could
be applied to other domains in order to identify methods that
exhibit certain types of behaviour and interactions with the
external environment of the process being executed.

The implementation used in this work is available online15.

B. Future Developments

Future works may concern a deeper analysis and further
improvement of the concepts acquired throughout the testing
and development of the current work.

The model allows the user to apply different changes on how
the classification works without training again the machine
learning model. By exploiting this feature to calculate at run-
time the Resource Classes specific to each input received, the
model automatically adapts the classification to the library it
is analyzing. However, this implies that the model should be
able to automatically identify Resource Classes, which is not
a trivial problem.

Nevertheless, there are several ways to approach the prob-
lem, but we suppose that a semantic-oriented approach may
be the most appropriate. Several third-party resources share
similar keywords across the different components they are
made of. The class name, the package name, the documenting
comments, the name of the declared methods and of the
implementing interface can all help to identify a correct
category for the resource under analysis.

An example of a very naı̈ve approach to the problem could
be to use the edit distance between the methods and class
names from the initial classes in R. The closer a new instance
is to a class in one specific category, the more likely it will be
to get assigned to such a category. More generally, the seman-
tic similarity of the context in which a class is defined can be
compared with a pre-defined set of terms or classes using a
certain policy. Cutting-edge research in the literature is already
studying how to integrate Natural Language Processing and
Ontologies [19] to Software Engineering problems like this.
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APPENDIX A
FEATURE FUNCTIONS

This appendix lists the feature functions that define the
feature set FU as defined in Section III-E.

A. Helper functions

The helper functions, required to define the feature functions
listed in the next section, are defined below:
• φ : Σ → R ∪ ⊥ maps a class in the scene with

the highest hierarchy Resource Class it implements or
inherits from. The ⊥ value is used if the class implements
no Resource Class, while R is the set of the resource
classes considered by the model;

• class : Σ′ → Σ returns the class of a method;
• prefix(s, x) returns true if x is prefix of s;
• substr(s, x) returns true if x is substring of s;

www.ibm.com/security/data-breach
https://bitbucket.org/darius-sas/sscm
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Fig. 4. The matrix scatterplot of some category features of the validation set. Features are mapped into D = [0, 2] ⊂ N with additional jitter to help for
visualisation. For the feature columns: 0 is Undefined, 1 is False and 2 is True. For the class column: 1 is Source, 2 is Mixed, 3 is None, 4 is Sink. (Best
with colors.)

• param : Σ′ → ℘(Σ) returns the types of the parameters
of a method;

• ret : Σ′ → Σ returns the return type of the method;
• d : E × Σ′ → {true, false} is an intra-procedural

dataflow function, evaluating true whenever e ∈ E holds
for m ∈ Σ′. E is the set of dataflow endpoints containing
the following pairs:

– 〈p, this〉 dataflow endpoint from any parameter p to
this;

– 〈p, s〉 dataflow endpoint from any parameter p to a
Resource Method invocation statement s;

– 〈s, ret〉 dataflow endpoint from any R.M. invocation
statement s to the return statement ret;

– 〈s, this〉 dataflow endpoint from any R.M. invocation
statement s to this;

– 〈s, p〉 dataflow endpoint from any R.M. invocation
statement s to any parameter p;

• P = {PI ,PT ,PM}.

B. Feature functions

Let FU be the feature set16 of U , defined as the union of
the following sub-feature sets:

F1
U = {fp | fp(m) = 1 iff prefix(m, p) = true,

m ∈ Σ′, p ∈ P}

F2
U = {fp | fp(m) = 1 iff m invokes a RM n s. t.

prefix(n, p) = true, m, n ∈ Σ′, p ∈ P}
16See Definition 6 from Section III-E.

F3
U = {fP | fP (m) = 1 iff prefix(m, p) = true

for some p ∈ P with m ∈ Σ′, P ∈ P}

F4
U = {fc | fc(m) = 1 iff k(φ(class(m))) = c

with m ∈ Σ′, c ∈ C}

F5
U = {fc | fc(m) = 1 iff k(φ(p)) = c for some

p ∈ param(m) with m ∈ Σ′, c ∈ C}

F6
U = {fc | fc(m) = 1 iff k(ret(m)) = c

with m ∈ Σ′, c ∈ C}

F7
U = {fc | fc(m) = 1 iff substr(class(m), x) = true

and w(x) = c for some x ∈ W with m ∈ Σ′, c ∈ C}

F8
U = {fe | fe(m) = 1 iff d(e,m) = true, e ∈ E}

F9
U = {fs | fs(m) = 1 iff class(m) has modifier s,

with m ∈ Σ′, s ∈ {interface, abstract}}

F10
U = {fs | fs(m) = 1 iff m has modifiers

with m ∈ Σ′, s ∈ {abstract}}
More precisely:

FU =

10⋃
i

F i
U

With a total number of features equal to |FU | = 2|P|+ |P|+
4|C|+ |E|+ 3.
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