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Abstract—Architectural smells may substantially increase
maintenance effort and thus require extra attention for potential
refactoring. While we currently understand this concept and
have identified different types of such smells, we have not yet
studied their evolution in depth. This is necessary to inform their
prioritisation and refactoring. This study analyses the evolution
of individual architectural smell instances over time, and the
characteristics that define these instances. Three different types
of architectural smells are taken into consideration and mined
from a total of 524 versions across 14 different projects. The
results show how different smell types differ in multiple aspects,
such as their growth rate, the importance of the affected elements
over time in the dependency network of the system, and the
time each instance affects the system. They also cast valuable
insights on what aspects are the most important to consider
during prioritisation and refactoring activities.

I. INTRODUCTION

In recent years, there has been increasing interest on the
concept of architectural smells (AS): issues in the architecture
that often cause extra maintenance effort [1]. Several studies
have explored this concept and identified different types of
such smells [1], [2], [3], [4]. However, while the evolution of
code smell instances has been extensively investigated, very
few studies focus on the evolution of architectural smells and
do so only at a coarse-grained level (e.g. by simply counting
the number of smells in each version). There is also no work
tracking the individual smell instances along system evolution.

We need to study the evolution of AS in detail because
AS are a different type of “affliction” than code smells:
they usually involve more elements than code smells, they
affect the system at a different scale, and they require more
effort to be refactored [1]. At the same time, the long-term
advantages of this refactoring in terms of maintainability and
changeability of the system are higher. Thus, the current
theoretical knowledge on code smells cannot be applied to
AS.

In this study, we propose an approach to study the evolution
of AS detected by an open source tool named Arcan [5],
by tracking individual smell instances and measuring the
evolution of the properties of each detected instance. We
have detected almost 150.000 unique smell instances in over
500 versions across 14 open source Java projects. We have

performed four types of analyses: a generic data mining
analysis to have a better understanding of the data, a trend
analysis to understand the evolution of the smells over time,
a correlation analysis to identify possible correlations among
the smell characteristics1 considered, and a survival analysis
to document their probability to persist within the system.
The focus of this study is on the architectural smells known
as instability AS [6]; these are introduced in more depth in
Section III.

Our findings can enable practitioners and researchers to
develop strategies for optimal refactoring prioritisation of
individual smell instances based on multiple factors. For
example, a Hublike dependency smell is a much better option
for refactoring than a Cyclic dependency, especially in terms
of complexity, and future and present maintenance effort. Ad-
ditionally, Cyclic dependencies have a much shorter lifetime
on the average, making them less critical in general.

The remainder of this paper is organised as follows: Section
II discusses similar work in the literature, Section III intro-
duces the smells hereby considered, Section IV explains the
methodology of this case study, Sections V, VI, VII, and VIII
report and discuss the results of the different analyses, Section
IX lists the threats to the validity of this study and finally
Section X concludes the paper.

II. RELATED WORK

We present related work concerning both architectural
smells and code smells.

In the former case, Al-Mutawa et al. [7] have investigated
the circular (or cyclic) dependencies’ shape in Java programs.
They developed and validated a methodology to detect and
classify circular dependencies starting from the bytecode of an
application. Their findings, based on a case study performed on
the Qualitas Corpus [8] data set, suggest that the most common
shapes (see Figure 2) are tiny and multi-hub. Moreover, they
also argue that cycles among parents and children packages are
less critical than cycles among non-related packages, providing
empirical evidence to back up their claims.

1See Section III-B for the definition of characteristics and the full list.



Another study that considers the history of architectural
smells was published by Roveda et al. [9]. In their work,
the authors try to estimate the architectural debt index using
architectural smells and track the evolution of the index
throughout a system’s history. The calculation uses partial
historical information of the AS identified by the Arcan tool
in multiple versions. The major shortcomings of Roveda et
al.’s index are: (i) the historical information used is limited to
the size of the smell and only considers the previous version,
(ii) the historical information is weighted equally for every
smell type, and (iii) it does not account for the magnitude
of the variation, i.e. a decrease by only one element halves
the contribution of the smell to the overall index, whereas an
increase by only one doubles it. Indeed, one of the goals of this
work is also to provide theoretical background and practical
tools to improve such types of calculation.

Concerning code smells, there are several works on tracking
smells throughout a system’s history. In their work, Vaucher
et al. [10] have focused on the code smell God Class and
its evolution in terms of the degree of “godliness”, estimated
using their previous approach based on Bayesian belief net-
works. The authors analysed the trend of such a parameter
for each God Class instance in the history of two systems.
Their findings suggest that the godliness of God classes tends
to remain constant in over 60% of the cases.

A different perspective on code smells evolution was intro-
duced by Chatzigeorgiou et al. [11], who analysed the survival
probability of four types of code smells. Their findings show
that Long Methods are the most persistent code smells in the
two analysed systems.

In a similar work, Peters et al. [12] have also analysed the
persistence of code smells in a system, though they have used
a slightly less elaborate technique to do so and on a slightly
different set of smells. Their findings show that Feature Envy
methods are the least persistent type of smell (similarly to
the finds of Chatzigeorgiou et al.) and that Data Classes are,
instead, the most persistent ones.

III. ARCHITECTURAL SMELLS

A. Definitions and implications

This section lists the architectural smells (AS) considered
by this study. The definition of these smells is provided by
Arcelli et al. [6] and briefly reported here.

1) Unstable dependency (UD): This smell represents a
component2 that depends upon a significant number of com-
ponents that are less stable than itself. The stability of a
component is measured using Martin’s instability metric [13],
which measures the degree to which a component (e.g. a
package) is susceptible to change based on the classes it
depends upon and on the classes depending on it. The smell
thus arises when a component has a significant number of
components – the tool Arcan uses a 30% threshold [5] – it
depends upon with an instability value higher than its own.

2Generally, by components we refer to both classes and packages. Only
in the case of UD, we only mean packages.
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(a) An example of UD affecting component A. The compo-
nents that A depends on go from B to H, and the majority
of them are less stable then A itself.
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(b) An example of HL affecting component A, causing all
of the components depending on A to be more susceptible
to changes due to possible ripple effects propagating from
the components that A depends upon.

Fig. 1: Examples of UD and HL smells.

A UD smell is detectable on Java package-like elements only
(i.e. containers of classes). A simplified example of UD is
shown in Figure 1a.

The main problem caused by UD is that the probability to
change the main component grows higher as the number of
unstable components it depends upon grows accordingly. This
increases the likelihood that the components that depend upon
it (not shown in Figure 1a for simplicity) change as well when
it is changed (ripple effect), thus inflating future maintenance
efforts.

2) Hublike dependency (HL): This smell represents a com-
ponent where the number of ingoing and outgoing dependen-
cies is higher than the median in the system and the absolute
difference between these ingoing and outgoing dependencies
is less than a quarter of the total number of dependencies of
the component [6]. A hublike dependency can be detected both
at the package and at the class level.

The implications of this smell for development activities are
once again concerning the probability of change and the ease
of maintenance. Consider, for example, the case represented
in Figure 1b. Making a change to any of the components that
A depends upon may be very hard [13], even though there
is only one component depending on them. Additionally, the
central component is also overloaded with responsibility and
has a high coupling. This structure is thus not desirable, as it
increases the potential effort necessary to make changes to all
of the elements involved in the smell.

3) Cyclic dependency (CD): This smell represents a cycle
among a number of components; there are several software
design principles that suggest avoiding creating such cycles
[1], [14], [15], [16]. Cycles may have different topological
shapes. Al-Mutawa et al. [7] have identified 7 of them; the



Fig. 2: Cycle dependency shapes. Figure originally published
by Al-Mutawa et al. [7].

ones detected by Arcan are shown in Figure 2 [5]. Usually,
the circle shape is intuitively perceived as the typical CD, but
it is certainly not the only possible type of CD. In fact, there
is empirical evidence [7] that tiny and multi-hub shapes (two
stars attached together that are missing some edges) are more
common than circle.

Besides affecting complexity, their presence also has an
impact on compiling (causing the recompilation of big parts of
the system), testing (forcing to execute unrelated parts of the
system, increasing testing complexity), or deploying (forcing
developers to re-deploy unchanged components) [1].

B. Architectural smell characteristics

An architectural smell characteristic is a property or at-
tribute of an architectural smell instance. An architectural
smell instance is a concrete occurrence of a type of architec-
tural smell. For each architectural smell type, one can measure
different characteristics. We refer to the characteristics that can
be measured for every type of smell as smell-generic, whereas
we refer to the characteristics that can only be measured for
certain types of smells as smell-specific characteristics. The
characteristics considered in our work are reported in Table I.

We decided to focus our analysis on this set of smell
characteristics because they are measurable dimensions for
the different facets of smells that further quantify the extent to
which the smell affects the system; this can inform developers
on how to prioritize refactoring. Additionally, some of the
selected characteristics were developed, studied or discussed
by other authors in previous studies, as reported by the Ref.
column in Table I.

The smell-generic characteristic Overlap, Centrality, and
Size are of interest because they are all metrics that are
conceptually related to the complexity caused by any instance
of a smell in the system. Intuitively, all of them may hinder
the degree of understandability, extensibility, or generally of
maintainability of the components affected by a smell: the
more elements a smell has (size), or the more elements of a
smell are also involved in other smells (overalp), or the more
its elements are interacting with other important components
of the system (centrality), the harder it is to fully understand
or to refactor the smell.

Age, on the other hand, allows us to track the evolution of
the other characteristics over time, identify periods where they
are more impactful, or discern eventual correlations between
them.

TABLE I: The smell characteristics identified by this study. *
indicates this study. † marks characteristics not studied in this
study as they are intended as future work.

Smell Character. Description Ref.

smell-generic

All

Age The number of versions affected by the smell. *
Overlap
Ratio

The ratio of the total number of components
of a given smell that also take part in another
smell.

*

Centrality The importance of the components affected
by the smell within the system. Measured
using the PageRank of the components in the
dependency graph.

[9]

Size The number of elements of the system affected
by the smell.

*

Number of
edges

The number of dependency edges among the
components affected by the smell.

*

smell-specific

CD

Shape The cycle shapes as shown in Figure 2. [6],
[7]

Average
edge
weight

The number of dependencies (weight) between
the components affected by the smell. It can be
indicative of the difficulty of refactoring the
cycle.

[5]

Number of
inheritance
edges

The number of edges in the smell that represent
an inheritance between components.

[17]

Affected
design
level

Whether the cycle is present only at architec-
tural level (among packages) or also at design
level (among classes) too.

[7]

Parent
centrality†

The degree to which a package is at the centre
of a cycle with its children sub-packages.

[7]

UD Instability
gap

The difference between the instability of the
main component and the average instability of
the dependencies less stable than the compo-
nent itself.

[5]

Strength
(or DoUD
[5])

The ratio between the number of dependencies
that point to less stable components and the
total number of dependencies of the class.

[5]

HL
Average in-
ternal path
length†

Only computed on package HL. The average
length of the paths between internal nodes
with afferent dependencies and internal nodes
with efferent dependencies within the central
package. The shorter the length, the more the
packages that depend upon the main compo-
nent and packages that are depended upon by
it are connected.

*

Affected
classes
ratio†

Only computed on package HL. The ratio
between the number of classes taking part in a
dependency relationship with afferent and ef-
ferent packages of the main component and the
total number of classes in the main component.

*,
[18]

The CD smell-specific characteristics Shape and Average
edge weight are of interest because they are directly related to
the complexity of the smell. The more complex the shape, and
the more edges there are between the affected components, the
harder the smell is to refactor because more effort is required.
The Affected design level, similarly, is important because the
cycles present at both package and class level have an impact
on two different levels at once. Finally, the Number of inheri-
tance edges characteristic is considered because inheritance
edges are considered an indicator of an intentional design
choice [17], thus intentional cycles that contain a high number



of inheritance edges between the components may be more
interesting for a developer to inspect.

The UD smell-specific characteristic Instability gap and
Strength are of interest because they are used for the detection
of the smell and thus can effectively measure its criticality.
The higher the instability gap, the higher the chance the
component affected by the smell is changed due to ripple
effects [13]. Likewise, the higher the strength, the higher the
chance (because there are more possible components that are
prone to a change) a change occurs and propagates to the
affected component.

The HL smell-specific characteristics Affected classes ratio
and Average internal path length are of interest because they
quantify the involvement of the internal classes in the smell
by answering the questions ‘How many classes belonging to
the affected package (out of all package classes) contribute to
the smell?’ and ‘How much efferent and afferent packages are
actually connected?’, respectively. Intuitively, if the average
internal path length is low, it is easier for changes to propagate
through the components involved in the smell. And if the
efferent and afferent packages are poorly connected (i.e. few
paths), the chance a change propagates is small. In other
words, these two characteristics measure the proneness of a HL
smell to propagate changes incoming from its dependencies to
the components depending upon it.

IV. CASE STUDY DESIGN

The design of the case study follows the guidelines proposed
by Runeson et al. [19] to conduct and report case studies.
Furthermore, the protocol used to conduct the study and keep
track of the changes is based on the template proposed by
Brereton et al. [20].

A. Goal and research questions

The objective of this study is to expand the current
knowledge of architectural smells evolution. Using the Goal-
Question-Metric [21] approach, the objective formulation is:

Analyse the evolution of individual architectural
smells instances throughout the system’s history for
the purpose of understanding them with respect to
their characteristics and lifespan from the point of
view of software architects in the context of open
source systems.

Each one of the research questions that further refine the goal
of this study focuses on a different aspect of their evolution:
RQ1 studies the evolution trend of each type of smell w.r.t
their characteristics, whereas RQ2 studies the survivability (or
persistence) of each smell type. The two research questions
(RQ1 and RQ2) are answered by answering a number of sub-
questions (e.g. RQ1a and b for the case of RQ1).

RQ1 How does each type of architectural smell evolve through-
out the system’s history?

a) How do the smell characteristics of each smell type
(i.e. size, centrality, etc.) evolve over time?

b) Is there a correlation between smell characteristics of
the same smell type?

This research question focuses on investigating the evolution
of each type of architectural smell through their characteristics
and identifying relations among them. It can provide infor-
mation for understanding the effects of each type of smell
on the system, which can then be used to define refactoring
prioritisation rules based on single instances of that type.
Identifying relations is important to avoid using the same
information multiple times. This means that it is necessary
to identify eventual correlations among them so that we can
determine if we can omit some of the characteristics without
losing essential information.

One example of the use of trend as indicator for extra
maintenance effort could be the trend of centrality, a smell-
generic characteristic that measures the degree of connectivity
of the elements affected by a smell with the other system’s
components: the higher the values the more other components
are in some way connected to it and thus the more probable
for a change to have ripple effects.

RQ2 How do the different types of smells compare against
each other regarding their lifespan?

a) Which types of smells, CD, HL or UD, are more
persistent (i.e. are less common to be removed)?

b) Do the same smell types at package and class level
have a different survival probability?

c) Does the shape of a CD smell affect its lifetime?
The aim of this research question is to compare the different
types of smells in terms of their survivability. Answering this
question could help to define prioritisation rules at the level of
smell type. For example, one could choose to first refactor the
types of smells that are more likely to persist longer within
the system.

We decided to focus on survivability because it is a time-
based measurable dimension of architectural smells, affecting
future maintenance: the longer an AS affects a system, the
longer the developers and architects will spend extra mainte-
nance effort on the affected components.

B. Case selection

In this study, we used a set of open source systems known
as the Qualitas Corpus (QC) [8]. We decided to work with
open source systems (OSS) for the following reasons: OSS are
easy to retrieve and manipulate, the QC has a big variety of
different projects ready to be used, and it is easier to develop
static analysis tools when there is the possibility to inspect
the source code analysed. We consider the extension of our
analysis on industrial systems as future work.

The QC has more than 100 projects that can be potentially
analysed. We required that projects have more than 15 versions
available so to ensure smells have enough time to grow, evolve,
and fade, thus limiting the number of candidate projects to 15.
We also removed EclipseSDK from our selection due to its
size causing difficulties during tracking. The demographics of
the selected projects are shown in Table II.



TABLE II: The projects from the Qualitas Corpus release
20130901e used in this study. A total of 524 versions (both
major and minor) were analysed.

Project # Versions First version Last version # Unique AS

Ant 23 1.1 1.8.4 1211
Antlr 22 2.4.0 4 1183
ArgoUML 16 0.16.1 0.34 3886
Azureus 63 2.0.8.2 4.8.1.2 108796
Freecol 32 0.3.0 0.10.3 13259
Freemind 16 0.0.2 0.9.0 994
Hibernate 115 0.8.1 4.2.2 13551
JGraph 38 5.4.4 5.11.0.1 249
JMeter 24 1.8.1 2.9 1846
JStock 30 1.0.6 1.0.7c 927
Jung 23 1.0.0 2.0.1 238
JUnit 24 2 4.11 164
Lucene 35 1.3.0 4.3.0 1126
Weka 63 3.0.1 3.7.9 2164

Arcan

Project
versions

Tracked smell instances
in the project's historyASTracker

CSV +  
GraphML files 

AS in
v2

AS in
v1

AS in
v3

Fig. 3: Data collection process and tooling. The data of each
individual project was then merged in a single data set.

C. Tooling

To perform the study, we developed a toolchain that allows
to mine architectural smells from a series of precompiled Java
systems, as illustrated in Figure 3. The toolchain is composed
of two parts: AS detection and AS tracking.

1) Architectural smell detection: To identify architectural
smells we use Arcan3, a free Java tool for detecting archi-
tectural smells in a system. Arcan receives as input one, or
multiple, JAR files of a single version of a system and outputs
a series of CSV files and a GraphML file. The graph file
is the dependency graph of the given system extended with
nodes denoting architectural smells. The same information as
the graph file is contained within multiple CSV files.

2) Architectural smell tracking: In order to perform the
study, we needed to track the architectural smells for each
pair of consecutive versions of the system, i.e. from v1 to
v2, from v2 to v3, and so on. To this end, we developed a
tool, ASTracker4, that performs the following steps: it takes
as input multiple versions of a system (the GraphML files
produced by Arcan) and maps every smell in each version to
its closest successor in the next version, calculates the smell

3See https://gitlab.com/essere.lab.public/arcan.
4See https://github.com/darius-sas/astracker to access the tool and the data

used in this study.

characteristics, and returns the results as CSV and GraphML
files.

To perform the mapping of each smell to its successor
we use a function J known as Jaccard similarity index [22],
defined as

J(A,B) =
|A ∩B|
|A ∪B|

where A and B are the sets of the affected components
in two consecutive versions. The index simply measures the
percentage of elements that are shared by the two sets. The
use of this methodology and of the Jaccard index are justified
because a smell is defined by the elements it affects: the
similarity of the affected sets of elements leads to identifying
the successor of a smell.

The comparison among elements in the sets is made using
the full name of the classes/packages. The main advantage
of this method is that it avoids name conflicts; however, a
renaming in any of the parent packages results in the inability
to track the smell in the next version. Thus, for every smell k
in version v1 and for every smell l in version v2, we compute
jkl = J(a(k), a(l)) which is basically a matrix where the rows
are the smells from v1 and the columns are the smells from v2.
The function a returns the set of elements affected by a smell.
The linking between smells k and l is done using a greedy
strategy: the highest jkl such that k and l have not already
been linked with another smell, is the next mapping k → l
to be created. The greedy strategy ensures that every smell
has been linked with the smell that is most similar to itself,
which means formally that only one cell per row and column
from the matrix j is selected. This operation is repeated until
there are no more smells left to map or the similarity scores
of the remaining ones do not satisfy jkl ≥ θ, where θ is the
similarity threshold defined as

θ =

{
0.67 for |a(k)| > 5

0.60 for |a(k)| ≤ 5

We selected a variable threshold in order to cover the big
variance of the function J when a(k) has a relatively small
cardinality. To adjust the thresholds, we consulted all the
possible values of J in the case where the two inputs shared
all of their elements but only the size changed. Additionally,
we also consulted all the possible values for small input
sets sharing a variable number of elements. The selection of
θ = 0.60 when |a(k)| ≤ 5 allows for a maximum difference of
3 elements with a smell’s successor, allowing the algorithm to
be more permissive for smells with fewer elements. Likewise,
a value of θ = 0.67 allows for a reasonable variation when
the size of an AS is bigger than 5.

The algorithm only maps smells of the same type, namely
CD with CD, UD with UD, and HL with HL.

V. GENERAL RESULTS

This section introduces some general statistics and insights
concerning the data we have collected5.

5Supplemental material available at http://www.cs.rug.nl/search/uploads/
Resources/supp-material-as-evo-icsme19.zip.

https://gitlab.com/essere.lab.public/arcan
https://github.com/darius-sas/astracker
http://www.cs.rug.nl/search/uploads/Resources/supp-material-as-evo-icsme19.zip
http://www.cs.rug.nl/search/uploads/Resources/supp-material-as-evo-icsme19.zip


A. Smell density

A good starting point in understanding the evolution of
smells is to look at the smell density (# of smells per
component). As the smell density in a system gets closer to
one it means that, on the average, there is one smell for every
component in the system. Figure 4 shows the density of each
smell type across the versions of every system.

Remarkably, seven projects have a smell density for CD
among packages that is either higher or very close to 1
in most of their versions, meaning that it is quite common
for developers to create cycles among the packages of the
systems, thus increasing the complexity of the system. It is
interesting though to note that the density of CD among
classes, in most of the systems, is more or less constant
throughout time despite the size of the systems growing (i.e.
their ratio remains mostly constant). In other words, CD smells
at class level are constantly introduced by developers as a by-
product of the development activities as the system evolves.
This causes also the number of cycles among packages to
increase (because some of those cycles will be among classes
from different packages), and since the number of classes per
package increases over time in most of the systems analysed
the smell density on packages is bound to increase as well.
A similar pattern also emerges for UD smells, which are
also constantly introduced in the system and have a growing
trend. On the contrary, the number of HL smells stays mostly
constant and relatively low (less than 10) over time in all
the systems analysed, which is expected as a system has
only few components that have a disproportionate number of
dependencies.

Takeaway
Dependencies across packages affected by CD smells become ever
tighter as the system ages, making it more difficult over time to
reuse them seperately, without importing the whole system. This
is caused because the cycles among packages grow in number at
a higher rate than the number of packages itself.

B. Smell characteristics

In this section, we briefly cover some interesting findings
on the characteristics mentioned in Table I. One noteworthy
finding is the difference in size between smells. HL smells, due
to their definition, tend to be usually bigger than the other
types of smells, surpassing 100 elements in bigger systems,
whereas UD smells are the smallest ones, hardly surpassing
10 elements even in bigger systems. However, CD and UD
smells have higher overlap ratio in general, meaning that trying
to refactor a smell with high overlap will entail also dealing
with a certain number of other smells.

Concerning UD smells specifically, we note that their insta-
bility gap mostly ranges between −0.1 and −0.3; since these
values are relatively close to zero, we argue that they are not
very prominent and by slightly improving the instability of few
packages, the smell could be removed. However, the instability
gap is also decreasing over time for 50% of the UD smells
detected (more details on this analysis in Section VI), meaning
they become more severe over time.

Finally, we also note that CD smells are mostly at the class
level only6 (ranging from 60% to 95%, depending on the
project) or package level only (from 0 % to 75%, depending
on the project). A small percentage (less than 3%) affects
class and package level at the same time and an even smaller
percentage (1-2%) switch between levels over time (e.g. they
go from class level only to both architectural and class).

VI. TREND ANALYSIS (RQ1A)

A. Methodology: dynamic time warping

Analysing the trend of all the characteristics of each smell
instance detected in the analysed systems was not a trivial
problem to solve, due to its dimensionality (smell instances,
time, characteristic). The approach adopted to solve the afore-
mentioned problem was signal classification: the values as-
sumed by a certain characteristic for a certain smell over time
are considered as a signal, then they are compared to a series of
predefined signals and a label is assigned to each one of them
based on the distance from each template. We used dynamic
time warping7 [23] to warp the signal of each template and
stretch it to match the signal one desires to compare it with.
This technique was previously used by Vaucher et al. to
classify the trend of God Classes [10].

Formally, we can model the problem as follows: for every
smell characteristic Ck of a certain smell k we consider the
different values Ck

i as a signal S. We then compute the fol-
lowing variables: h = maxS; l = minS; and m = (h+ l)/2.
These three values are then used to build the seven templates,
named from a to g, as shown in Figure 5. For example,
temblate (b) is defined as b = (l,m, h). The templates are
re-adjusted for each signal classified. Finally, the signal is
classified by comparing the distance of the signal from each
template, and selecting as a label the template name of the
closest signal template. Specific implementation details can
be inspected in the source code4.

(c)	Sharp
increase

(b)	Gradual
increase(a)	Constant (d)	Temporary

increase
(e)	Temporary

decrease
(f)	Sharp
decrease

(g)	Gradual
decrease

–h
m–

l –

Fig. 5: Trend evolution classification templates. Figure adapted
from the work of Vaucher et al. [10].

Despite the selected templates offering a good variety of
possible signal shapes, there may be some cases that are not
described well enough by the current selection. For example,
signals that vary between two integer values (e.g. 6-7) multiple
times, would be classified by the model as a constant signal
(i.e. template (a)). Nonetheless, we deem that the approxima-
tion offered by the model when unusual signal curves have to
be classified is sufficient for the purpose of this paper for the
following reasons:

6See ’Affected design level’ in Table I for more details.
7The implementation used for this analysis was provided by the R

package dtw.
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• the templates selected represent simple and general cases,
thus they simplify interpretation and analysis;

• a signal is classified based on the distance between points
from the template and points from the signal itself after
being warped, thus the classified signal has at least an
internal component that resembles the classification tag
(i.e. template) assigned.

B. Results

We performed the aforementioned analysis for all of the
numeric characteristics we have recorded. Hereby we report
only the most interesting ones, as there is a large number of
data and results that could not realistically fit into this paper.

a) Size: Overall, the size of the smells stays constant
throughout their evolution, especially in the case of CD and
UD. This is shown in Figure 6 where approx. 50% of the
total CD and UD across all systems have a constant trend.
Instead of growing in size, CD smells tend to grow in number,
spreading across the system as new elements are added to
the system’s dependency network (i.e. new classes, packages,
etc.). Nevertheless, there is a fair amount of smells among
all the types that exhibit an increasing trend of some kind
(types B, C, D). Specifically, HL smells tend to grow in
nearly 65% (40% Sharp and 25% Gradual increase) of the
cases. Given its nature, having a hub that keeps getting bigger
and bigger through dependencies from more and more classes,
or packages, is problematic: that part of the system becomes
more complex, it has a lower cohesion and a higher coupling,
thus hindering future maintenance activities on it. It is thus
important to limit the growth of such smells by redistributing

the responsibility of the central component affected by the
smell to others.

b) Number of Edges: Contrary to size, the number of
edges connecting the components affected by a smell have
a different trend: they tend to increase. Specifically, as can
be seen in Figure 6, each smell type exhibits an increasing
trend in the number of edges involved in the smell of at
least 40% and up to 80%. Additionally, the number of edges
between the affected components grows faster than the number
of components per se. Again, this is especially true in the case
of HL smells, making them the type of smell that grows faster
among the smells studied in this work. Hublike dependencies
are thus an important source of extra maintenance effort,
and the number of edges among the affected components
of an HL smell can quantify this effort more precisely than
the number of affected elements. Indeed, this makes sense
because an increasing number of edges between components
also increases the probability that a change propagates to
adjacent components that depend on the component subject
to change (as described in Section III-A2). This fact was also
mentioned in a previous work on change proneness metrics
of software packages, where the number of method calls (and
thus also dependencies) has been used as a change proneness
indicator [24]. Additionally, Martin also links dependencies
with change proneness [13].

c) Centrality: The centrality metric selected is PageRank
[9]. We decided to measure the PageRank of a smell as
the maximum PageRank value of the affected components
and then weight it against the number of elements in each
version. This weighting makes sense because as the system
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ages, also the number of nodes in the graph used for the
calculation of the PageRank increases, scaling down its values,
but maintaining the proportions, hence the weighted version
allows us to account for this phenomenon.

As one can observe in Figure 6, as the system and the smells
age, the centrality of the smells tends to increase in the vast
majority of the cases, especially for CD and HL. On the other
hand, UD exhibit more or less the opposite trends.

The results indicate that the component with the highest
PageRank (which is very likely to be the central component)
in HL smell tends to “move” to the centre of the system as the
system ages. A similar trend can be observed for CD smells
too. These results confirm a very important assumption for
these two types of smells: AS tend to move to more central
parts of the system as they age. These central parts are also
the most important as they have many ingoing dependencies.
Consequently, increasingly more maintenance is required for
the parts of a system that are affected by CD and HL smells.

Unexpectedly, for UD one can observe the opposite since
most of them exhibit a decreasing trend (types E, F, and G).

Takeaway
Hublike dependency smells are a better target for refactoring
activities in terms of reduction in complexity, future maintenance
efforts, and ease of removal for refactoring activities are likely to
focus mostly on the central component, by moving functionality
elsewhere, rather than on several components as in the case of
multiple CD smells.

VII. CORRELATION ANALYSIS (RQ1B)

To identify related pairs of characteristics for each smell
instance of the same type, and for each pair of characteristics,

we ran a Spearman correlation test to check for eventual
correlations. The test was selected because the data is not
normally distributed and it is not possible to assume that
there is any linear relationship among all the characteristics
neither. The test was performed on each smell instance and
only on the pairs of smell characteristics whose both standard
deviations were not equal to zero for that instance. The
aggregate test results for all smells were plotted using boxplots
(only p ≤ .05). The plots are included in the supplemental
material5 for space reasons.

The characteristics that present a correlation for the majority
of the instances detected are the following:
Num. of edges ∼ Overlap8 for smells of type HL and CD

at package level. This is expected because of the high
smell density at package level (as shown in RQ1a). UD,
however, do not present such a correlation for these
characteristics; this is probably because they usually do
not affect central parts of the system5, which are more
likely to be affected by multiple smells.

Num. of edges ∼ Centrality for HL smells at class level.
This was also expected due to the definition of HL
(i.e. a component with a lot of incoming and outgoing
dependencies, which increases PageRank by definition).
CD at class level also exhibit a correlation for these two
characteristics, but a bit weaker, probably because CD are
more frequent among elements near the center.

Num. of Edges ∼ Size strongly for all smells, which is ex-
pected.

Overlap ∼ Centrality only weakly. The most prominent cor-
relation is for HL at class level, but is once again
expected.

Overlap ∼ Size for CD at class and package level, is also
expected, as the bigger the size, the more likely it is that
the elements affected are also affected by other smells.
The correlations also exist for HL smells, though they are
a bit weaker.

Number of edges seems to be correlated with a number of
characteristics in multiple cases. Despite this result, it is hard
to state that, based on this correlation, one should ignore the
other characteristics, as these correlations mostly refer to the
majority of the instances rather than being an absolute gauge
of the general case. In fact, the only pair of characteristics
that one can state that are fully correlated for all smell types,
independently of the instance, are Size and Number of Edges.
The other correlations are either not valid for all of the smell
types, or only a part of the instances analysed show solid
evidence of correlation.

VIII. SURVIVAL ANALYSIS (RQ2A,B,C)

A. Methodology: the Kaplan-Meier estimator

The rate of survivability of an architectural smell within a
system may drastically vary depending on its type. To establish
the rates and compare them among the different projects and
smell types, we employed a technique typically used in the
biomedical sciences, in product reliability assessment, and



also employed to analyse code smell persistence in previous
studies [11]. Unlike simple descriptive statistics, such as mean,
density functions, and similar, survival analysis also takes into
consideration the possibility that a smell continues to affect the
system even after the last version included in the analysis. In
the biomedical domain, this event is associated with the patient
surviving past the period of the analysis.

The survival analysis is accomplished using the Kaplan-
Meier estimator [25], a non-parametric statistic that estimates
the survival probability of a type of smell as the system evolves
(new versions are released). The statistic gives the probability
that an individual patient (i.e. smell in our case), will survive
past a particular time t. At t = 0, the Kaplan-Meier estimator
is equal to 1, and as t goes to infinity, the estimator goes to
0. Also, the probability of surviving past a certain point t is
equal to the product of the observed survival rates until t.

B. Results

Figure 7 reports the results of the analysis, i.e. the survival
probabilities (a) of different smell types and (b) of different
cycle shapes.

1) Survival probabilities of different smell types (RQ2a,b):
One pattern that emerges from Figure 7a is that CD smells fade
much quicker than the other types of smells in almost all of
the systems and have a very small probability to persist within
the system for a long time. We conjecture that the cycles that
persist the most are the cycles among the fundamental compo-
nents of the system; these are very unlikely to change after the
core development activities for that part settle down and new
functionalities attract the effort of developers. Moreover, we
also note that cycles only have a 50% chance to stay within
the system for more than 4-5 releases. Furthermore, cycles
among classes persist a little longer within the system than
cycles among packages, probably because classes taking part
in cycles at design level only might have a stronger coupling
with each other than packages.

Another pattern that emerges is that UD is the most per-
sistent type of smell, being the one with the highest survival
probability in the long run. Its survival probability is so high
that in some systems it never falls below 50%, even when there
are a lot of versions such as in the case of Azureus. Moreover,
it also decreases at a much slower rate than the other types of
smells, making it an ideal target for refactoring to avoid extra
maintenance effort in the long run.

HL smells, are more or less in between the other two
smell types. They exhibit a similar decrease rate in survival
probability as CD smells but eventually end up surviving for
more releases. However, this pattern does not hold for all the
projects, and in some cases, HL smells end up being removed
within fewer versions than CD. This trend holds true especially
for HL at the class level, which tend to decay much faster than
HL at the package level. Thus, it is reasonable to state that
HL at package level can be prioritised over HL at class level
as they have a higher chance of requiring extra maintenance
over time. In general, from this analysis one can conclude that
package level smells, such as UD and HL on packages, tend

to last a little bit longer than class level smells, implying that
smells at the package level are potentially more impactful on
maintenance efforts than smells affecting classes only.

Takeaway
The refactoring prioritisation should not focus on cyclic depen-
dencies that were recently introduced, as it is very likely that
they will disappear within the next few releases because they are
less likely to influence the maintenance effort on the long term.
Instead, refactoring should first focus on either UD smells or HL
smells among packages as they exhibit higher persistence rates.
This also confirms that most circular dependencies are not critical
[7].

2) Survival probability of different CD shapes (RQ2c):
Concerning the different shapes of CD smells, Figure 7b shows
how different shapes persist within the system. The results
show that the most pervasive shape in most systems are tiny
shapes. This makes sense as tiny shapes are composed by
only two elements and there might be multiple dependency
edges between the two elements; thus the probability of a tiny
cycle to break is smaller than shapes with multiple elements.
Additionally, tiny cycles are easier to understand and may also
be intentionally designed as such.

On the other hand, the other, more complex, shapes are less
resilient (i.e. they disappear faster than tincy cycles) and there
is very little difference between different shape types, making
it hard to formulate any solid proposition on their survivability.
In order for these complex shapes to persist, they must affect
parts of the system that have a solid conceptual connection;
otherwise they do not persist long within the system.

Regarding instead the cycles Arcan could not classify into
definite shapes, they have a more consistent trend and dis-
appear quicker than all other shapes. A possible explanation
could be related to their nature: we conjecture that this type
of cycle is mostly random and caused by casual relationships
among components that tend to connect multiple uncomplete
cycles into a single one, possibly overlapping with other
cycles as well. Thus these very volatile edges that interconnect
multiple parts of a system have a high chance of getting
changed because they are individual edges, and if one of these
edges is removed, the whole cycle breaks. This is also evident
from the clear difference in survival probability between the
unclassified shapes and the complex shapes (circle, chain,
clique, star).

Takeaway
We suggest that tiny shapes should not to be prioritised during
refactoring even though it is the most persistent one, as it may
be the result of intentional design (false positives). Refactoring
activities, instead, should prioritise old cycles with complex
shapes that are more likely to affect important parts of the system,
and thus that are more likely to incur extra maintenance effort.

IX. THREATS TO VALIDITY

We identified the possible threats to validity for this study
and categorised them using the classification proposed by
Runseson et al. [19]: construct validity, external validity, and
reliability. Internal validity was not considered as we did not
examine causal relations [19].
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Fig. 7: Survival probability p up until any time t. p = 0.50 is represented by a vertical dashed line. Only a selection of systems
is shown here for the sake of readability. The full plot is available in the supplemental material5.

a) Construct validity: This aspect of validity reflects
to what extent this study measures what it is claiming to
be measuring [19]. In this study, we aim at measuring the
evolution of architectural smells instances and understand
them depending on their type and different characteristics. We
developed a case study using a well-known protocol template
[20] that was reviewed by the three authors and an external
researcher in several iterations to ensure that the data to be
collected would indeed be relevant to the research questions.

A possible threat to construct validity is the correctness of
the tracking algorithm that might be incorrect or not cover
some special cases, such as the renaming of the affected
components. To mitigate this threat, we manually validated the
tracking results for one of the projects considered in this study
(Antlr) and fixed any issues we found during our inspections.

Another threat concerns the detection of the smells con-
sidered in this project which depends on the implementation
offered by Arcan. This is partially mitigated, as the Arcan tool
has already been used and evaluated in a number of studies
[6], [26].

Finally, the last threat we identified is the relatively long,
and variable periods of time in between the versions analysed
for each project. This problem may have caused the prevalence
of ‘sharp’ classification in the trend analysis over the ‘gradual’
ones. We mitigated this threat by limiting the importance we
attribute to the specific type of the trend and focusing mostly
on its nature (i.e. increase/decrease) and by also including
projects with a strict release schedule (e.g. Hibernate).

b) External validity: This aspect of validity reflects to
what extent the results obtained by this study are generalisable
to similar contexts. The second one regards the projects
we used to collect the necessary data. These projects were
all open-source Java systems, Hence, it is not possible to
generalise these results to industrial projects or projects written
in a different programming language. However, we addressed
this threat by adopting a collection of systems (the Qualitas
Corpus) specifically intended for scientific analyses and tried
to include as many projects and versions as possible in order

to increase the sampling size of the population analysed.
Our findings can thus be generalised to other Java projects
of similar size and history that have an active open source
community backing the development efforts.

c) Reliability: Reliability is the aspect of validity fo-
cusing on the degree to which the data and the analysis are
dependent on the researcher performing them.

The data and the tools used in this study are freely available
online3,4 to allow other researchers to assess the rigour of the
study or replicate the results using the same data set or even
on a different set of projects.

The reliability of the findings is guaranteed by the fact
that all the intermediary results were inspected by a second
researcher during all the data analysis process. The analysis
was also performed using well-established techniques already
used in previous work for analysing similar artefacts (code
smells) as well as also in different fields (e.g. survival analysis,
in the biomedical sciences field).

X. CONCLUSIONS

This study has investigated the evolution of instability
architectural smells in the context of open source systems with
respect to their characteristics and persistence. We presented
multiple findings and practical implications useful both for
practitioners and researchers that can help them improving
the strategies for reducing long term maintenance efforts by
managing architectural smells.

As future work, we plan to extend our tooling to mine archi-
tectural smells directly from Git repositories, thus allowing us
to link the current information to code churn and investigate
the effects of smells on change rates.
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