
Software Quality Journal manuscript No.
(will be inserted by the editor)

Quality attribute trade-offs in the embedded systems
industry – An exploratory case study

Darius Sas · Paris Avgeriou

Received: date / Accepted: date

Abstract
Context: The embedded systems domain has grown exponentially over the past
years. The industry is forced by the market to rapidly improve and release new
products to beat the competition. Frenetic development rhythms thus shape this
domain and give rise to several new challenges for software design and develop-
ment. One of them is dealing with trade-offs between run-time and design-time
quality attributes.
Objective: To study practices, processes and tools concerning the management
of run-time and design-time quality attributes as well as the trade-offs among them
from the perspective of embedded systems software engineers.
Method: An exploratory case study with two qualitative data collection steps,
namely interviews and a focus group, involving six different companies from the
embedded systems domain with a total of twenty participants.
Results: The interviewed subjects showed a preference for run-time over design-
time qualities. Trade-offs between design-time and run-time qualities are very com-
mon, but they are often implicit, due to the lack of adequate monitoring tools and
practices. Practitioners prefer to deal with trade-offs in the most lightweight way
possible, by applying ad-hoc practices, thus avoiding any overhead incurred. Fi-
nally, practitioners have elaborated on how they envision the ideal tool support
for dealing with trade-offs.
Conclusions: Although it is notoriously difficult to deal with trade-offs, con-

Darius Sas
Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence
Faculty of Science and Engineering
University of Groningen
Nijenborgh 9, 9747AG Groningen, Netherlands
ORCID: 0000-0003-3383-3298 E-mail: d.d.sas@rug.nl

Paris Avgeriou
Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence
Faculty of Science and Engineering
University of Groningen
Nijenborgh 9, 9747AG Groningen, Netherlands
ORCID: 0000-0002-7101-0754 E-mail: paris@cs.rug.nl



2 Darius Sas, Paris Avgeriou

stantly monitoring the quality attributes of interest with automated tools is key
in making explicit and prudent trade-offs and mitigating the risk of incurring
technical debt.

Keywords Embedded Systems · Technical Debt · Energy Efficiency · Depend-
ability · Trade-off · Empirical study

1 Introduction

Over the past years, embedded systems (ES) have experienced an exponential
growth, both in terms of size and complexity as well as the number of domains
where they are applied. However, this growth also brings substantial challenges,
one of which is to deal with both the run-time quality attributes that determine
system behaviour, and the design-time ones that establish system sustainability.
Managing quality attributes and performing trade-offs between them is notoriously
difficult in any field [7]. In the case of embedded systems, it is even more challeng-
ing, due to the limited hardware resources on which the software is deployed, as
well as the rapid evolution of hardware [25].

The management of trade-offs between run-time qualities on the one side, and
design-time qualities on the other, is thus becoming a critical research area. Specif-
ically, the embedded systems industry needs dedicated tooling, processes and prac-
tices for managing such trade-offs [4]. At the moment, several tools are available,
both free/open-source and commercial, but only to support the management of
individual quality attributes of interest in embedded systems. The management of
trade-offs is still an unexplored area: not only there are no tools available, but, to
the best of our knowledge, there is also no evidence regarding the specific needs of
the embedded systems industry on performing quality attributes trade-offs. Thus,
this problem can be formulated as a high-level research question: How are trade-
offs between quality attributes currently managed by the ES industry and how can
this be improved?

We begin to address this problem through an exploratory case study investi-
gating how embedded systems engineers manage trade-offs between run-time and
design-time quality attributes and what kind of support they require. We collected
data in three steps. First, we performed a series of interviews with eight subjects to
obtain a fine-grained understanding of the daily activities they performed and the
trade-off decisions they experienced on their projects. Then, we planned a focus
group session with eight subjects (two of the had also taken part in the inter-
views), discussing the issues, costs, decisions, and related trade-offs of design-time
and run-time qualities. The interviewees and the focus group participants worked
in five different companies in the embedded systems domain. And finally, we in-
terviewed six more participants in order to check, confirm, and possibly extend
the findings from the previous two phases.

Our findings shed light on which qualities are prioritised in the studied do-
main, what kind of trade-offs occur, how these trade-offs take place in practice,
and how they should ideally take place. We note that, while our scope encom-
passes run-time and design-time qualities in general, we pay special attention to
Maintainability, Dependability, and Energy Efficiency. We selected these qualities
due to their importance for the embedded systems software development lifecycle
[21,23] (further motivation for these 3 qualities is given in Section 3.1).



Title Suppressed Due to Excessive Length 3

This paper is organised using the Linear-Analytic Structure version of the
case study reporting template proposed by Runeson et al. [33]. This template was
chosen because it is commonly used to report case studies in Software Engineering.
Section 2 introduces some theoretical background and reports on similar work from
literature. Section 3 elaborates on the case study design, while Section 4 reports
the results obtained by this work. Section 5 presents a discussion on our findings
with key take-away messages. Section 6 describes some threats to the validity of
this study and how they were mitigated. Section 7 concludes this work and explores
possible future work.

2 Background and Related work

This section summarises the background knowledge necessary to better understand
the work presented, and reports on related work.

2.1 Background and terminology

The management of the quality attributes of a system is a key activity on which
the success of the project and user acceptance heavily depend on. Indeed, software
quality is defined as the degree to which software possesses a desired combination
of quality attributes [5,19].

Quality attributes may be categorised according to different criteria; one possi-
ble taxonomy is to divide them according to their run-time or design-time nature
[7]. The former type includes the quality attributes that describe the behaviour
of a system during its execution; in other words, those attributes that impact
the usage of the system by external actors, which may be both users or other
systems (e.g. Performance, Reliability, Security). In contrast, design-time quality
attributes determine the ease of managing the system artefacts during the soft-
ware development lifecycle and the sustainability of the system over time (e.g.
Maintainability, Reusability, Testability). We adopted such a dichotomy in order
to focus our efforts on the trade-offs between the quality attributes across the two
categories rather than within them.

As mentioned in Section 1, we pay special attention to Maintainability as a
design-time quality and Dependability and Energy-efficiency as run-time qualities.
Maintainability is strongly connected to the concept of technical debt [24], which
plagues all non-trivial embedded systems. Technical debt entails a trade-off (often
an implicit one) between the maintainability of a system and short-term benefits
[24]. Dependability is composed of four sub-qualities, namely Availability, Relia-
bility, Safety, and Security [20]. Energy efficiency has become a very prominent
run-time quality in the era of the Internet of Things and Cyber-Physical Systems
as it affects the battery life of embedded devices [34].

In this paper, we adopt the definitions of Maintainability, Performance, Inter-
operability, and Security from ISO/IEC 25010:2011 [2]. For Reliability we adopt
the definition of Fault-tolerance from the standard. Availability is also defined as
in the standard, however, we treat it separately from Reliability, while the stan-
dard considers it part of Reliability. For Safety, we adopt the definition provided
by IEC 61508-1:2010 [1].



4 Darius Sas, Paris Avgeriou

A trade-off between two quality attributes is a conscious, or unconscious, de-
cision that positively affects one quality attribute and negatively affects the other.
Trade-offs are an indispensable element of software engineering, as every decision
has both benefits and liabilities. But not every decision may imply a trade-off
between quality attributes, and it may not always be the case that the quality
attributes involved in a trade-off are explicitly known. Some decisions may con-
ceal implicit trade-offs which the decision-maker may not be aware of, either at
the time of taking the decision or later. There are several approaches that help
to deal with trade-offs; one of the most prominent is ATAM (Architecture Trade-
off Analysis Method), which specifically focuses on evaluating the trade-offs while
designing, or maintaining, a software architecture [7,11].

2.2 Related work

A number of studies provide evidence regarding the trade-offs between run-time
and design-time quality attributes in the embedded systems domain.

Ampatzoglou et al. [4] performed an extensive case study on the perception
of technical debt in the embedded systems industry, shedding light on how Main-
tainability is traded-off against other qualities. A number of engineers from seven
companies were interviewed, using a supervised questionnaire-based approach, to
elicit information about a total of twenty software components that had accu-
mulated technical debt and were difficult to maintain. Their findings show that:
(a) Maintainability is more seriously considered when the expected lifetime of the
project is over ten years; (b) the most frequent types of technical debt are test, ar-
chitectural and code; and (c) the embedded systems industry prioritises Reliability,
Functionality and Performance against Maintainability.

In a similar context, Wahler et al. [36] investigated trade-offs between qual-
ity attributes in industrial control and automation systems (ICASs) running on
embedded devices. The authors performed an online survey taken by thirty-seven
participants who had worked on real-time embedded systems. The findings suggest
that there are three clusters of qualities that contain positively-related quality at-
tributes. The first cluster is composed of two run-time qualities – Timeliness and
Predictability – which means that fulfilling Timeliness eases fulfilling Predictabil-
ity. The second cluster is composed of three design-time qualities – Modularity,
Reusability, and Portability – and again fulfilling one eases fulfilling the others.
The third cluster is composed of a single run-time quality: Efficiency, intended as
power consumption and heat dissipation. The authors state that quality attributes
belonging to one of the clusters negatively influence the attributes of the others
clusters.

Feitosa et al. [15] investigated quality attribute trade-offs among critical and
non-critical qualities by analysing twenty open-source Java projects in the embed-
ded software field. The following findings emerged from their analyses: (a) Correct-
ness negatively affects Performance since solving bugs usually introduces inefficien-
cies in the source code that affect performance, and (b) increasing Performance
negatively affects Reusability since solutions that improve performance have a
negative impact on quality metrics like cohesion, coupling and size.

Similarly, Papadopoulos et al. [30] studied the interrelation between design and
runtime quality metrics by examining source code quality and comparing it with



Title Suppressed Due to Excessive Length 5

the performance and energy consumption of a set of embedded applications. In
their work, they measure source code quality using the Cognitive Complexity met-
ric calculated by SonarQube1 and CPU cycles, cache misses, and memory accesses
to measure run-time performances. The authors observed that, by applying certain
transformations to the source code of the selected embedded systems, there exist
trade-offs between performance/energy consumption and Cognitive Complexity.

A different approach was used by Oliveira et al. [29], who measured design-time
quality metrics on the source code and compared them with performance-related
metrics (i.e. memory, time, etc.) measured during the execution of the system.
The authors compared four alternative designs of an example system, showing the
existence of trade-offs between design-time quality metrics and performance. More
precisely, the increase of the McCabe Cyclomatic Complexity metric correlated
with a decrease in cycles performed and memory used.

A practical approach to managing trade-offs between run-time and design-time
qualities was introduced by Corrêa et al. [12]. The authors propose an approach
for guiding design decisions based on the prediction of physical properties (cy-
cles, power consumption) using traditional software metrics, showing how design
decisions impact on the physical properties of the final system.

The work of Mentis et al. [28] focuses on evaluating the impact of design deci-
sions on run-time quality aspects for different software architectures (not limited
to embedded systems). Their analysis discovered groups of run-time metrics that
strongly correlate among each other, for they were found to be affected by the
same architectural factors. However, their approach is based on simulation data
obtained using a tool developed by the authors themselves for a previous study.

Bellomo et al. [8] studied the most common quality attributes that projects
must address and their relative importance. Their aim was to understand the
impact of long-term architectural deterioration (i.e. technical debt) of quality at-
tributes based on quality attribute scenario data generated through the Archi-
tecture Trade-Off Analysis Method (ATAM) from multiple projects and multiple
domains (including ES) and companies. Their results show how Modifiability (i.e.
Maintainability) is of primary importance in the majority of the projects consid-
ered by the study.

Martini et al. [26] explore, by interviewing fifteen embedded systems practition-
ers, the input they use to deal with architectural technical debt items caused by
non-optimal architectural decisions as well as the priority they attribute to differ-
ent aspects of software development. Their findings suggest that Maintainability-
related costs are important when prioritising technical debt but they are secondary
to other business-oriented factors, such as the competitive advantage.

The presented studies differ from this work in at least one of the following
aspects: (a) they base their analyses and conclusions on open-source projects rather
than on industrial ones; (b) they focus on source code analysis rather than on the
human factors that caused a particular change in the system; (c) they do not
report on individual trade-off experiences shared by developers. We chose these
criteria to compare our study to the related work as they comprise the goal of the
study and highlight its uniqueness. Our study is the only one that fulfils all three
of these criteria as summarised by Table 1.

1 See https://sonarqube.org/.

https://sonarqube.org/


6 Darius Sas, Paris Avgeriou

Table 1: Comparison between related work studies and this study. TO stands for
trade-off.

R.W.
Industrial

setting
Human

factors of TO
Report TO
experience

[4,36] 3 3 7

[8,26] 3 7 7

[15,30,12,28] 7 7 7

This work 3 3 3

3 Case study design

We followed the guidelines proposed by Runeson et al. [33] to conduct and report
case studies. Furthermore, we used the protocol template proposed by Brereton
et al. [10] to develop the case study design and keep track of its changes. The
replication package of this study is available online2 and includes the case study
protocol, the questionnaires of the interviews, the discussion agenda of the focus
group, the transcription template, the notes used to explain the technical concept
to practitioners, and the consent letter template. To ensure the quality of the
results of this study, we list the threats to validity in Section 6 and the mitigating
actions undertaken to address them. Moreover, a sanity check of all results was
performed by discussing them in a dedicated meeting of our research group.

3.1 Objective and Research Questions

The objective of this study is made more specific using the Goal-Question-Metric
[35] formulation:

Analyse the experience of software engineers for the purpose of under-
standing the management of run-time qualities, design-time qualities and
the trade-offs among them with respect to practices, processes and tool
support from the point of view of software engineers in the context of
industrial embedded system projects.

The stated goal leads to four specific research questions:

RQ1 What is the interest of the ES industry in design-time and run-time quality
attributes, such as Maintainability, Dependability and Energy efficiency, and
what tools, processes, and practices are adopted to manage them?

This investigates the qualities of interest (in the scope of this study) for practition-
ers in the ES domain, as well as tools, processes, and practices used to address these
qualities individually. We distinguish between design-time and run-time qualities.
Once we understand which qualities are of interest, the next question explores
their trade-offs.

RQ2 What trade-offs between design-time and run-time qualities do ES practition-
ers make?

2 Visit http://www.cs.rug.nl/search/uploads/People/repl-package-ds18.zip.

http://www.cs.rug.nl/search/uploads/People/repl-package-ds18.zip


Title Suppressed Due to Excessive Length 7

This aims at eliciting knowledge on the compromises and trade-offs between design-
time and run-time qualities, as well investigating the implicit or explicit nature of
such trade-offs. Once we understand which trade-offs are made, the next question
explores how they are made.

RQ3 What processes, practices, and tools do ES practitioners use to support trade-
off decisions?

This focuses on understanding whether the developers follow processes and prac-
tices (formal, ad-hoc or otherwise) for dealing with trade-offs and how these are
eventually applied. It is also of interest to check if dedicated or general-purpose
tools are used to support the trade-off decision making process. Once we under-
stand how trade-offs are currently made, the next question explores how they
should ideally be made.

RQ4 What would be the ideal features of a tool supporting quality attribute trade-
off decisions?

Finally, this research question aims at obtaining insight on the desired features for
an ideal tool that supports quality attribute trade-off decisions. We have chosen
to investigate ideal tool support instead of practices or processes because (a) tools
are less explored by the current literature [6], and (b) practitioners urgently need
tools to manage trade-offs effectively [4].

As aforementioned in Section 1, qualities of particular interest during this study
are: (a) Maintainability, due to the impact of software maintenance on the overall
project costs [13]; (b) Dependability, due to its high significance in most embedded
systems, especially safety-critical ones [21]; and (c) Energy Efficiency, due to its
rising popularity in multiple sub-domains of embedded systems [23]. All of these
qualities have a concrete impact on the success of a product in today’s embedded
systems market as they provide a technological competitive advantage for they
affect both costs and end user experience. While we pay special attention to these
three qualities, the study looks at design-time and run-time qualities in general.

3.2 Cases, subjects and units of analysis

The case study was designed as an exploratory embedded multiple-case study [33].
A multiple-case study allows studying multiple cases (each within its own context)
with a single protocol. As shown in Figure 1, the companies map to the individual
cases (or case subjects) while their domain maps to the context. Accordingly, the
engineers that took part in the study correspond to the individual unit of analysis;
thus each engineer represents a single unit.

Table 2 lists the case study subjects along with the application domain of the
respective company and the number of engineers involved in the study.

Due to the adoption of two data collection methods, interviews and focus group
(described in the next section), the selection process of the engineers taking part
in the study was threefold.

1. In the first step, each case subject was asked to designate two or three software
engineers to take part in the interviews.

2. Next, the case subjects were asked to provide, if possible, at least one or two
additional engineers to take part in the focus group.



8 Darius Sas, Paris Avgeriou

Context 1

Case 1

Embedded Unit of
Analysis 1.1

Embedded Unit of
Analysis 1.2

Context 2

Case 2

Embedded Unit of
Analysis 2.1

Embedded Unit of
Analysis 2.2

Domain

Company 2

Engineer 1

Engineer 2

Fig. 1: Embedded multiple-case study design; based on Figure 3.1 by Runeson et
al. [33].

Table 2: The case study subjects. Size classification follows European Union’s SME
classification based on the number of employees: Small (< 50), Medium (< 250),
Large (≥ 250).

Case subject Domain Size # of Engineers

C1 Defense and civil aviation Large 6
C2 Industrial wearables Small 4
C3 High Performance Computing Medium 3
C4 Medical implants & HPC Small 4
C5 Automotive Large 1
C6 IoT & Sustainable Energy Medium 2

Total 20

3. In the third and final step, a second round of interviews was performed inter-
viewing different set of engineers.

This process of data collection ensured data source triangulation (i.e. collect-
ing the same data at different occasions) and methodological triangulation (i.e.
combining different types of data collection methods) [33].

Overall, twenty engineers with experience ranging from one to thirty years,
working in six different companies, took part in the study.

3.3 Data collection

The research questions were explored by collecting qualitative data through a series
of individual interviews and a focus group. The following subsections describe both
data collection methods in more detail.

3.3.1 Interviews

Interviews were designed following a semi-structured format, composed of a set
of predefined open questions, with the possibility for the interviewer to further
investigate interesting answers, and for the interviewee, to freely elaborate on
them. The questionnaire can be found in the replication package2.



Title Suppressed Due to Excessive Length 9

Goal:  
introduce the
interviewee to the
objective of the
study

Introduction

Goal:  
collect contextual
info about the
interviewee 

Context setup

Goal:  
ask the main
questions of the
interview

Main phase

Goal:  
collect
interviewee's
general opinions

General
considerations

Goal:  
inform the
interviewee about
the next steps

End of the
interview

Fig. 2: The format of the interviews.

Before the interviews began, practitioners were asked to think of a brownfield
project on which they had worked on for at least one year and which had at least
two of the following quality attributes among their key drivers: (a) Maintainabil-
ity (i.e. technical debt), (b) Dependability (Availability, Reliability, Security
and Safety) and (c) Energy Efficiency. Such a request was necessary in order
to guarantee that the subjects were referring to a project that had had enough
time to accumulate technical debt and was concerned with the quality attributes
of interest to this study. More specifically, brownfield projects have an inherent
amount of accumulated technical debt, whereas greenfield projects do not have
big maintenance issues. Additionally, working on a project for at least one year
increases the knowledge of the system, allowing the practitioner to obtain a deep
understanding and experience.

Interviews were performed in two rounds spanning one year one from the other
but following the same protocol and questionnaire (strengthening data source tri-
angulation [33]). In the first round, eight interviews were performed, whereas in the
second, six. Background details on the fourteen interviewed practitioners and the
related projects is reported in Table 3. The participants were interviewed through
video-conferencing for approximately one hour each. Prior to performing the ac-
tual interviews, two pilot interviews were performed to calibrate the case study
protocol and particularly to refine the questions. The first pilot suggested that
there was a lack of clarity in some of the questions, and that an initial written
list of the topics covered by the interview was necessary to allow the practitioners
to prepare themselves upfront. The change required updating the protocol, which
prevented us using data from the first pilot in the analysis phase. Concerning the
second pilot, the interview allowed us to improve the time required to ask the
interviewee all the questions and it did not result in any change to the protocol.
Although minor changes to the questions were made, none of them was enough
to impact the validity of the interview. Hence, the data from the second pilot
interview was considered valid and was used in the analysis.

Each interview spanned five phases: the first and the last correspond to the
introduction and the conclusion phases respectively, while the other phases were
dedicated to data collection, as can be seen in Figure 2. After transcribing the
recordings, each transcription was reviewed by the interviewee in order to avoid
misunderstandings.

Concerning the projects discussed with the fourteen interviewees, two of them
talked about the same project, thus thirteen projects were analysed in this study.
Finally, all interviewees gave their explicit permission for their interview to be
recorded.



10 Darius Sas, Paris Avgeriou

Table 3: Background information on the interviewee and their respective projects.

ID Comp. Project Platform
Role in

the comp.
Years of exp.

curr. role in total

I1 C1
Onboard airborne

surveillance system
C++,

WinXP
Software
Engineer

2 17

I2 C1
Onboard airborne

surveillance system
C++,

WinXP
Software
Engineer

10 16

I3 C1
Black box software

for UAV drones
C++

Software
Architect

8 13

I4 C1 UAV patrol drone C++
Software
Architect

2 2

I5 C2
Meteorological
station with

distributed sensors
Java

Software
Architect

5 11

I6 C2
Smart Glasses for

industrial technical
assistance

Java
Software
Engineer

3 7

I7 C3
Quantum

Chromodynamics
computations

Java +
VHDL

Application
developer

3 3

I8 C3
Scientific

calculations on
FPGAs

Java +
VHDL

Application
developer

1 2

I9 C4
Framework for

brain simulations
on FPGA

Java +
VHDL

Application
developer

6 6

I10 C4
Security-by-design

for IMD
C + VHDL

Application
developer

2 7

I11 C4
Object tracking
application on

FPGA
C + VHDL

Application
developer

2 2

I12 C2
Smart Glasses for

industrial technical
assistance

Java
Software
Engineer

7 10

I14 C6
Distributed mobile
sensing platform

C++
Software
Engineer

1 1

I15 C6
Network of power
meters for solar

panels

Python,
Raspberry

Pi

Software
Architect

6 6

Average 4.1 7.3

3.3.2 Focus group

The focus group session was performed for the purpose of triangulating the results
with the data from the interviews (methodological triangulation [33]). Addition-
ally, the focus group enriched the findings from the interviews and explored, from
a group viewpoint, the practices adopted by the subjects in real-world embedded
system projects. The focus group guide can be found in the replication package2.

It is important to note that, in a group setting, subjects express more explicit
and detailed views about their needs due to cognitive mechanisms that activate
only through active discussion with other subjects similar to them [27,22]. More-
over, during a focus group, practitioners can also compare their experience with
the other participants and provide unbiased feedback (to the other group mem-



Title Suppressed Due to Excessive Length 11

bers) from an extraneous point of view. Hence, by pairing the focus group with a
number of individual interviews, we collected both personal experiences and group
opinions.

In total, eight participants were involved in the focus group; two of them had
also taken part in the interviews. The session was guided by the two co-authors,
fulfilling the assistant and moderator roles respectively, as suggested by Kontio [22]
and McDonagh-Philip [27]. The format adopted for this data collection step was
semi-structured and divided into phases, as depicted in Figure 3. After introducing
the participants to the focus group dynamics, background information about the
participants was collected and is reported in Table 4. Contrary to what we did
during the interviews, we did not ask practitioners to focus on a single project, but
rather we deliberately let them talk about their whole experience in the industry.
This choice simplified the session, as it would have been impractical and too time-
consuming to ask each participant to select a project and share a minimum amount
of context with the other participants in order for the discussion to make sense.
Next, the conversation continued with the main discussion points, prepared prior
to the beginning of the session, that touched upon the same topics, and in the
same order, as the ones from the interviews. The session ended after 1 hour and
45 minutes and was recorded and transcribed with the consent of the participants.

Prior to the beginning of the focus group, the participants had also received
a brief written introduction with some examples explaining the technical termi-
nology adopted throughout the discussion. This succinct explanation prepared
them for the beginning of the session, whereas the introduction phase covered any
other gaps in their theoretical knowledge. The discussion points were designed in a
semi-structured way and focused on trade-off decision making and related support,
since the data collected on these topics during the interviews needed to be further
strengthened by the focus group. Specifically, they first covered the three main
quality attributes of this study (i.e. Maintainability, Dependability, Energy Effi-
ciency) in order to initiate the technical discussion. Then, the discussion moved to
implicit and explicit trade-off experiences and related opinions. In the end, ideas on
a envisioned tool supporting trade-offs management were proposed and discussed
by the participants. The contribution of each participant in the discussion was
overall balanced. Nonetheless, two of the participants made fewer interventions
than the average did, whereas another one intervened in most of the discussions
and required the intervention of the moderator. Moreover, two factors, namely the
semi-structured format of the focus group and the presence of two moderators,
ensured that the discussion had a specific direction at any point and that the two
participants (out of eight) that were also interviewed did not unveil details that
would bias discussion and the other participants.

3.4 Data analysis

The analysis of the interviews was performed using the Constant Comparative
Method (CCM) [9] (which is part of Grounded Theory [17]), with the support
of a dedicated software tool for qualitative data analysis, Atlas.ti3. Grounded
Theory (GT) was used because it is one of the most important methods in the

3 See https://atlasti.com.

https://atlasti.com


12 Darius Sas, Paris Avgeriou

Goal:  
introduce the
participants to the
study and
explanations

Introduction

Goal:  
collect
information about
the participants'
background

Collect
background
information

Goal:  
discuss the main
points on the
agenda

Main discussion

Goal:  
wrap up of the
session and end of
the discussion 

End of the focus
group

Fig. 3: The format of the focus group.

Table 4: Background information of the focus group participants, including the
typical project size these practitioners work on. * denotes subjects that were also
interviewed.

ID Company
Typical project size Role in

the company
Years of exp.

in SLOC in PM curr. role in total

P1 C1 1000000+ 15-100
Key Account

Manager
13 31

P2 C1 50000+ 4
System

Architect
15 22

P3* C2 10000+ 3
Software
Architect

5 11

P4* C2 10000+ 3
Software
Engineer

3 7

P5 C2 10000+ 3 CEO 5 17

P6 C3 N/A 6
Project and

Research
Manager

3 5

P7 C4 15000 80 Chief Engineer 10 15

P8 C5 500000+ 7
Project

Manager
2 12

Average 7 15

field of qualitative data analysis and it has been used extensively within both
social sciences and software engineering. Additionally, GT provides a structured
approach to analyse and process the data collected from multiple sources, causing
the theoretical sensitivity of the researcher to grow as the data analysis progresses
and eventually allow him to formulate hypotheses and theory.

During data analysis, the CCM allowed us to better understand the data and
identify links between separate data points by comparing the differences and simi-
larities (using Atlas.ti’s features in addition to simple tables and diagrams) within
a single interview, between interviews of the same case, interviews from different
cases, and between interviews and statements from the focus group. The analysis
started by coding the available data using special keywords, like “trade-off” and
“quality attribute”, as codes. The coded quotations (i.e. the excerpts associated
with a code) were also linked, whenever necessary, using links of different types
(continued by, criticises, justifies, etc.), provided by default by Atlas.ti. Following
the guidelines of Runeson et al. [33] for analysing qualitative data, during the anal-
ysis, we continuously added new codes when necessary, updated the existing ones
and organised the final forty-nine codes by group. Additionally, we also created a



Title Suppressed Due to Excessive Length 13

labelled network, available in the replication package2, highlighting the relations
between the codes. Next, thanks to such an organisation of the codes and quota-
tions, we were able to query the data, summarise the information, and fill it into
tables used to compare related concepts and experiences among the participants
or among the different interview phases. Interesting findings and conclusions were
eventually inferred and annotated separately. The process was iterative and was
repeated several times until no new findings emerged from the analysis.

For the purpose of better understanding the analysis process, let us suppose we
wanted to know what practitioners think of Maintainability. To do so, we queried,
through Atlas.ti, all the coded statements related to the group of codes ”Main-
tainability”. Next we started reading all the statements, compared the opinions
in order to understand the differences or similarities, and then summarised with
own words their opinion in dedicated tables. The tables had as rows the quality
attributes of interest and as columns the interviewee ID, plus a general column
describing the general opinion. These entries were updated and revised with each
iteration of the analysis process.

Special attention was drawn to create a chain of evidence between the final
results, the intermediary data structures, and the interview transcripts. Chains of
evidence allow tracing back the origin of a particular piece of information to its
original source in case a review of the results might be necessary for the future.

The same methodology – CCM – was adopted for analysing the data from
the focus group. The recordings allowed us to easily discern the exact participant
contributing to the discussion, whereas the same tables and diagrams were adopted
to compare and contextualise the different statements of each participant.

4 Results

The following sub-sections report on the findings of this study, organised per re-
search question.

Before presenting the results, it is noteworthy to mention that the data col-
lected amounts to fourteen hours of recordings (almost thirteen hours of inter-
views, counting an average of 50 minutes on average per interview, and one hour
and forty-five minutes of focus group).

The results from RQ1 are mostly based on the interviews and partially trian-
gulated by the focus group.

The results from RQ2 are more mixed and contain one example (number 4)
exclusively mentioned in the focus group, one example (number 3) coming from
the interviews but mentioned by multiple focus group participants, and the rest
come from the interviews exclusively.

Concerning instead RQ3, it is hard to determine a precise contribution as
both interviewees and focus group participants were sharing similar opinions and
experiences.

Finally, the features mentioned by practitioners in RQ4 are equally split be-
tween focus group and interviews: three features were mentioned both in interviews
and focus group; three were exclusively mentioned in the focus group whereas four
were exclusively mentioned in the interviews. It is interesting to note that only
few minutes of focus group managed to produce a comparable number of ideal



14 Darius Sas, Paris Avgeriou

features as fourteen individual interviews, showing how group dynamics enable
creative thinking.

4.1 RQ1 – What is the interest of the ES industry in design-time and run-time
quality attributes, such as Maintainability, Dependability and Energy efficiency,
and what tools, processes, and practices are adopted to manage them?

To understand which quality attributes are the most important, we explicitly asked
practitioners to discuss and rank the quality attributes of interest in their projects.
We provide next some qualitative details on the quality attributes of interest along-
side the description of the tools, processes and practices used by the practitioners
for each quality attribute. We start with run-time quality attributes:

– Dependability includes Availability, Reliability, Security, and Safety, with
the first two being the highest priority in general. Availability and Reliability
are intrinsically dependent on each other and this aspect is reflected by the
fact that the same practices, such as software testing, flight simulations, flight
tests, and test-benches with simulated sensors, are adopted to enforce both
of them. There are also cases where not only Reliability and Availability are
highly connected, but also Safety, like in the case of flying drones, where the
inability to send commands to a drone could result in dangerous situations.
Let us discuss each sub-quality attribute separately:
a) Availability is safeguarded using different techniques, depending on the

domain of the project, such as: performance measurements with differ-
ent tooling, static analysis tools for bug identification (i.e. Coverity4), test
benches with simulated hardware, flight simulators, and log inspection for
pinpointing issues not identified automatically. In the case of the medical
project, it adopted multiple state-of-the-art design principles to ensure no
compromises over this quality, like for example intentionally allowing an
unlimited number of authentication attempts to the implant device and
exploiting energy harvesting techniques to ensure the device does not con-
sume all the battery while processing them. Another example, was the
offloading of all the operations related to Security on a separate processor,
so that the main one is completely free to perform a specific medical task.

b) Reliability is closely related to Availability, so similar techniques and tools
are used to measure and assess its level. There were also cases were Reli-
ability (on its own) was a critical quality attribute and special measures
were adopted to enforce the quality. For example, in one case the failure
of a small percentage (of thousands) of remote sensors could have a big
impact on the company’s business; hence a sophisticated logging system
was developed in order to monitor, detect, classify, and report every failure
and facilitate a root cause analysis of the problem. In another case, the
subjects prepared a special test to ensure the reliability of the connectivity
of the system in extreme conditions, and live-tested the product in condi-
tions that it was not originally designed to work in. The term Robustness
was also used by some of the subjects with the same meaning as Reliability
(they used both terms interchangeably).

4 See https://scan.coverity.com/.

https://scan.coverity.com/


Title Suppressed Due to Excessive Length 15

c) Security was of secondary importance, since most of the projects did not
manage any sensitive data. Among the projects that did have security-
oriented components, very few of them employed tools (e.g. BurpSuite5)
to statically check the code to identify possible vulnerabilities. In the case
of medical devices, were Safety is at risk if the Security of the device is
at risk, developers considered using verification tools and provers (such as
Tamarin Prover6, or AVISPA7) to check their implementation of the ISO
9798 standard, however, they deemed it was not necessary for such a sim-
ple protocol. As a final note, there was also a case were neither encryption,
nor any other security measure, was considered even though the project
involved data exchange over the network; this in contrast to common prac-
tices.

d) Safety was not a major concern in most of the projects, as they did not
have to perform safety-critical operations. However, two of the projects were
safety-critical, and in those cases safety was strictly tied with other quali-
ties, such as Availability, Reliability, Security and Energy efficiency. For ex-
ample, in the medical implant project, where Safety is their mantra, all four
of these qualities were necessary to be guaranteed in order to achieve the
expected level of Safety from an implantable medical device (IMD). Gen-
erally speaking, the interviewed practitioners, to enforce Safety, employed
techniques such as state-of-the-art design principles (such as the ones men-
tioned for Availability), flight simulations, intense testing and real-world
flying tests.

According to the comments of some of the interviewees, Security and Safety
were the least prioritised. This fact is because, at the beginning of a project, it
is first more important to achieve a high level of Availability and Reliability to
be able to impress the management and the eventual customers. Thus, they pay
extra attention to such quality attributes first (namely, they prioritise them),
and then, later on, before delivering the product to the customer, they focus
on meeting all the Security and Safety requirements of the specific domain the
customer is operating in. This can be seen as a prioritisation w.r.t time, rather
than importance, i.e. Security and Safety are carefully taken care of at a later
stage and certainly before delivery.
Before moving on to the next quality attribute, we present, as an example,
how the results on this quality attribute were obtained through the chain of
evidence. The first piece of evidence is encountered in the coded data, where
Dependability had its own dedicated code (along with four children codes, for
its four sub-qualities). Next, all the Dependability-coded data was summarised
in a structured table that included also the other quality attributes. Since the
reporting is based on such tables, the chain of evidence, from reporting to
raw-data, is complete.

– Energy Efficiency at the software level was not at the top of the priorities in
the projects studied. On the other hand, energy efficient hardware and hard-
ware design were deemed much more important and prioritised. In many cases,
the main source of energy consumption was located in the hardware parts (i.e.

5 See https://portswigger.net/burp.
6 See https://tamarin-prover.github.io/.
7 See http://www.avispa-project.org/.

https://portswigger.net/burp
https://tamarin-prover.github.io/
http://www.avispa-project.org/


16 Darius Sas, Paris Avgeriou

motors) or in the design of the hardware itself (e.g. FPGA and IMD design),
mostly ignoring the software part. At the software level, the most common
practice used to assess energy consumption is monitoring the computational
resources used by the software (CPU, memory, network, disk, etc.) or used by
the hardware managed by the software (e.g. sensors misuse). A similar case,
where resource usage and energy consumption are strictly tied, is when a cloud
back-end is required to manage the IoT infrastructure of the system. In this
case, practitioners saw the costs generated by the cloud back-end as energy-
related costs that critically impacted the business, and they used the tools
made available by the cloud service to guide their energy refactorings.
Finally, it is interesting to report that in one project, after a year of develop-
ment, it turned out that the intensive resource usage and sensor misuse were
causing excessive energy usage, which, along with severe architectural issues,
resulted in a complete rewrite of the system.

– Performance is especially important in HPC projects, where it is the main
driver for every decision made, practice and tool employed (especially at the
hardware level). Regarding embedded projects, it is not of high priority, as it
mostly depends on the projects needs rather that having explicit performance
requirements imposed by the needs of the domain. Concerning the tools and
practices used to measure and monitor performance, two approaches were men-
tioned often. The first one is the plain inspection of the logged timestamps,
while the second one relies on dedicated tooling (such as VerySleepy8, or built-
in functions when available) to profile the execution time of the CPU (and
other resources). In general, resource usage is one of the key aspects of deci-
sion making for speed, general optimisations and other decisions.

Concerning design-time qualities, we observed the following:

– Maintainability was a crucial aspect in most of the projects discussed. How-
ever, no team reported using dedicated tools to measure and manage it, despite
having to deal in most case with issues, such as code duplication and magic
numbers, that are easily detectable by modern tools. In fact, some projects
had experienced major maintainability issues due to accumulation of technical
debt; in one case, this eventually caused the bankruptcy of the project [3],
forcing the team to rewrite the system from scratch.
The most commonly-mentioned arguments for striving for high maintainabil-
ity include the addition of new members to the team (which may substitute
existing ones), the architectural complexity of some parts of the system (that
need to be easily understood despite their complexity), and the necessity to
support future changes, both at software and hardware level, not through trial-
and-error but by-design. Contrary to Dependability, Maintainability, despite
being deemed very important, it is often down-prioritized in practice as it
is an easy target for cutting corners (prioritisation w.r.t importance).
Some subjects mentioned certain programming practices that they follow in
order to increase Maintainability, such as coding rules, conventions, applying
design patterns, and common sense. Other subjects, from company C1, ex-
plained how they employ documentation to transfer knowledge between teams
and from old projects to new projects, especially because the developers work-
ing on those projects change very often (every 6 months on average). That

8 See http://codersnotes.com/sleepy/.

http://codersnotes.com/sleepy/


Title Suppressed Due to Excessive Length 17

company works in the aviation sector, which is safety-critical, thus they rely
on source code comments and documentation to keep track of every hack and
optimisation made in the code. The documentation is then inspected every
time the code is transferred to new projects to be reused to ensure that such
hacks and optimisations do not cause any issues in the new project.
Lastly, it is worth mentioning that some sub-qualities of Maintainability men-
tioned by the subjects are Modularity, Readability, Flexibility, Reusability and
Understandability. None of them is monitored or measured in any way, simi-
larly as mentioned above for Maintainability.

– Extensibility plays an important role in many of the studied projects since
new functionality, new sensors, and new hardware in general, are required to be
added to the systems with minimal effort, and, in some cases, without stopping
the system. As in the case of Maintainability, several subjects stated that they
do not use any tool to measure or monitor this quality, but they specifically
address it up-front during design-time (at an architectural level).

– The ease of deployment (Deployability) on multiple platforms is a qual-
ity attribute that is important only for certain types of projects. Specifically,
some companies need to deploy off-the-shelf systems on arbitrary hardware
(e.g. drones, FPGA), rapidly adapt them to the new hardware platform and
extend them with custom modules specialised for the specific tasks required by
the customer. A tool-chain developed in-house is used to automate the whole
process.
In another company, the continuous change forced by rapid technology ad-
vancements (every 6 months), and the high competition in the sector, require
continuous hardware upgrades in order for the company to remain competitive.
In such a scenario, the subject’s strategy was to keep the projects source code
as independent as possible from the platform on which it is deployed on, so
every time the hardware changes, the changes in the software are minimised.

– System interoperability was also addressed by some of the subjects in order
to make the system compatible with several types of sensors for data collection,
receiving input from controlling devices and sending data streams to different
devices (e.g. smartphones, central control stations).

4.2 RQ2 – What trade-offs between design-time and run-time qualities do ES
practitioners make?

To answer this question, we elaborate on trade-off experiences shared by the sub-
jects during the interviews and the focus group and on the rationale behind those
trade-offs. We note that all these experiences had negative consequences on the
development activities. The subjects described a number of examples that are
worth presenting in some detail, as the context is of paramount importance to
understand the nature of the trade-off:

1. In this example, the goal was to optimise the saving times of the data on disk.
Specifically, the system had to manage a certain amount of data per second
which had to be permanently saved on disk. To this end, code maintainability
was compromised by performing memory optimisations and by trying different
disk access strategies (e.g. bulk or individual record writes). The subject was
perfectly aware that such a change would reduce the Understandability of the



18 Darius Sas, Paris Avgeriou

code, but accepted the trade-off anyway. Later on, when new measurement
types had to be added to the data saved on disk, it turned out that also the
Extensibility of that part was diminished, making it very time-consuming to
add new data types to the main data structure saved on disk. This trade-off
was therefore very inconvenient for this participant as he also said that “... all
the structs9 needed to be rethought”.
This explicit trade-off between Performance and Understandability also con-
cealed a hidden implicit trade-off that negatively affected Extensibility. Overall,
Maintainability was affected twice.

2. In this example, the system needed to access the DDR memory of the FPGA
in a more optimised manner so that the calculation could be accelerated. The
subject thus decided to re-organise the in-memory data representation of the
data itself in a tiled manner (e.g. data is separated into independent logical sec-
tions that occupy different portions of the memory), rather than as a monolith
(e.g. data is one big continuous portion that occupies the whole memory). This
change caused the code that managed the memory accesses to be much harder
to understand and thus to change because the tiled representation, despite
being faster, required extra code for it to work.
This explicit trade-off entails reducing the Maintainability of the involved part
by incurring technical debt, in order to favour Performance.

3. The following example is a common practice reported by multiple subjects.
It involves Dependability and Maintainability, with the latter being explic-
itly compromised in favour of the former in order to prepare the system for
a demonstration. The reason why Dependability – including Reliability and
Availability – are highly prioritised over other qualities in view of a demo is
because they must go well and impress the managers or the customers; for
example, if the drone does not respond to the commands in the middle of a
presentation it is worse than losing battery life 30% faster (demos do not last
long enough to be impacted by battery). Most of the times, demos also involve
new functionality. Thus, often practitioners rush the code of the features that
are going to be presented to the customer, ignoring good coding practices in
order to implement the feature faster. Unfortunately, they admitted that such
smelly code is rarely fixed after the demo is completed.
This explicit trade-off is an example of how Functionality and Dependability
are highly prioritised over Maintainability, causing the project to incur techni-
cal debt.

4. This experience refers to a practice commonly employed by teams that develop
multi-threaded systems. The system was originally designed using a layered ar-
chitecture to take advantage of its main benefits: high Modularity and Porta-
bility. Over the years, the system kept steadily growing, with new layers and
concurrent tasks added, as new features or changes were required. Eventually,
the overhead introduced by the multiple architectural layers influenced the ex-
ecution time of every concurrent task at the point that the tasks could not be
completed within the time-slot assigned to them, thus negatively influencing
performance. To fix the issue, the developers started to deliberately compro-
mise Maintainability (incurring technical debt) by bypassing the architectural
layers to gain the speed necessary to complete the tasks within the assigned

9 Intendend as the struct data structure from the C++ language.



Title Suppressed Due to Excessive Length 19

time-slot. The performance gains were quite big, since once a layer is bypassed,
multiple instances can use the same link. The big gain in performance encour-
aged them in repeatedly applying this hack to improve performance.
This practice is an example of an explicit trade-off that damages Maintainabil-
ity in order to gain Performance. It is also an example of inherently trading
off Performance for Portability, as the extra layers allowing for Portability
eventually reduce performance.

5. This example concerns favouring the Deployability of the system over Perfor-
mance. It concerns projects that are being deployed within containers (e.g.
Docker). Even if the extra layer introduced by the container slows down the
system performance, the team accepts this explicit trade-off to avoid the effort
of deploying the system for several platforms.

6. The following example reports on a trade-off at design level with great impact
on the end user’s experience. In this project, the system was meant to provide
easy and immediate access to accelerating the user’s scientific applications
through FPGAs. To achieve such a goal, the team designed a generic FPGA
model that was able to accommodate for roughly 80% of a typical user’s needs.
This flexibility was only possible by: (1) imposing some limitations to the user’s
control over some of the parameters that one can usually define while working
with FPGAs and (2) forcing a modular design of the system at the cost of
reducing performance. More specifically, as FPGAs require to statically define
everything during design-time, accounting for different modules impacted on
the potential performance that users could obtain by running their application
on FPGAs designed by themselves.
This trade-off was therefore explicit at the time of making the decision, sacri-
ficing Performance in favour of Modularity as the team developing the system
knew very well what were the consequences on Performance of providing a
flexible, accessible, and modular FPGA acceleration framework.

7. In this case, the system was supposed to provide a live streaming service over a
4G connection to a remote endpoint over the network. However, when the signal
was weak, video quality was greatly affected. The development team recognised
that by adopting different encryption and authentication algorithms depending
on the quality of the signal, they could improve user experience without sac-
rificing Security. This option was preferred over not using any encryption and
authentication at all, which would have simplified Maintenance and improved
user experience at the same time. Nevertheless, the team decided to not sacri-
fice Security despite the extra code necessary to implement the aforementioned
solution and the overall complexity it introduces.
The development team was not willing to sacrifice Security, and due to the
incoming release date of the project, it was necessary to fix the issue as soon
as possible. Hence, they decided to quickly fix the problem by ignoring the
effects on Maintainability. This was an explicit trade-off that sacrificed Main-
tainability for Security and thus incurred technical debt. Interestingly, the team
admitted to often prefer Security over Maintainability.

8. This final example reports on a trade-off of Maintainability, more precisely
Readability, in favour of Testability. The subject intentionally introduced a
more complex, but also more advantageous accumulation methodology of par-
tial results over multiple execution cycles in different components of the system.
The advantage lies in an easier inspection of the system’s state during simula-



20 Darius Sas, Paris Avgeriou

1

Maintainability
4

1

1
Performance

2
Dependability Deployability

Legend:

A B
A B

Traded	A	for	B	implicitly

Traded	A	for	B	explicitly

Fig. 4: Trade-offs between design-time and run-time quality attributes reported
by the subjects. Edge weights represent the number of trade-offs.

tion (i.e testing). Of course, the subject was clearly aware of the consequences
of this change over the Readability of the code.
Even though this is an explicit trade-off between two design-time qualities,
it is still interesting to report here in order to show the diversity of trade-off
decisions between qualities made in practice.

A summary of the quality attributes involved in the trade-offs reported above is
depicted by Figure 4.

One remarkable observation is that most subjects had difficulties identifying
the trade-off decisions they made, especially in the case of implicit trade-offs.
Additionally, some participants admitted that there may be trade-offs that they
are not aware of yet; these are both implicit and inadvertent trade-offs and are
very difficult to uncover.

4.3 RQ3 – What processes, practices, and tools do ES practitioners follow to
support trade-off decisions?

The results indicate that no particular process (i.e. ATAM, AHP, QFD, ADD,
etc. [6]) is adopted when a decision that impacts both run-time and design-time
qualities has to be taken.

The decision-making process in the cases studied follows common sense and
normal intra-team interaction dynamics. Specifically, the following practices were
common among the studied cases. Since most of the projects studied are developed
by small teams, it is common for software architects to also write code and work
closely with other developers. Most of the decisions that imply a trade-off between
essential quality attributes are taken by the architects themselves, potentially in
consultation with other team members. However, when an important trade-off
decision has to be made, the project leader is consulted in order to decide on
how to proceed. These cases usually concern the modification of a functionality
that might be of interest for the customer of the project (e.g. a change in the
requirements). Most of the teams do not consult external experts, but one of the
teams reported to occasionally do so, especially when dealing with complicated
third-party libraries impacting the performance of their code.

The subjects support their trade-off decisions by acquiring input from differ-
ent tools used to measure run-time metrics related to resource usage (i.e. CPU,
network, memory) and test results. Specific tools are occasionally used, but the



Title Suppressed Due to Excessive Length 21

most common practice for measuring execution times, memory used, and network
usage is logging. Specific domain-related devices that are used as an important
input are flight and hardware simulators. Teams working on projects relying on
cloud services for managing their back-end use the resource monitoring tools to
pinpoint hot-spots and drive their decisions related to the code. The study par-
ticipants working in the HPC domain use an internal spreadsheet to estimate the
performances of the card based on the clock frequency and the characteristics of
the card design. We emphasise that all aforementioned tools are used to measure
individual qualities; there were no subjects using dedicated tools that manage
trade-offs between qualities.

The findings can be summarised by stating that the study participants adopt
a more lightweight and ad-hoc approach to deal with decisions rather than using
a particular decision-support method. By lightweight and ad-hoc we mean that
they do not use specific methodologies, but they rather do an educated choice
based on the data they have available, their own experience and of the other team
members, and of course customer feedback whenever available. The main reason
is the limited amount of time between releases (or demos), which forces them to
directly tackle the issues they are facing in the most rapid manner in order to
continue the development of the system and deliver the product to the customer.

4.4 RQ4 – What would be the ideal features of a tool supporting quality
attribute trade-off decisions?

The features hereby are originated directly from the ideas of the focus group
and interviewees participants, they range from very specific topics in trade-off
management to the measurement of individual qualities. The next subsections
report on each category.

4.4.1 Trade-off management

Concerning features related to trade-off management :

– A common demand was the possibility to select a quality attribute for which the
system should propose potential optimisations and highlight eventual trade-
offs arising from applying them. For example, the envisioned system would
propose changes that might improve the Maintainability level of a particular
class, showing the possible impact on, for example, energy consumption for each
proposed change. Similar analyses should also be supported for other quality
attributes, such as Energy Efficiency and Security. The rationale behind this
requirement is to help practitioners increase a certain quality of the system and,
at the same time raise awareness about the impact on other quality attributes
involved in the optimisation;

– The ability to register explicit trade-offs, especially in terms of accepting the
compromised qualities, was also deemed important. For example, tools that
perform continuous analysis of quality attributes, will keep issuing warnings
related to the diminished quality (because of the trade-off). Practitioners men-
tioned that they would like to turn such warnings off since it would not make
sense to address them: that would simply cancel the effects of the trade-off



22 Darius Sas, Paris Avgeriou

decision. For example, by simplifying the cognitive complexity of a method,
thus easing maintainability, one might introduce energy inefficiencies. If this
optimisation was suggested and effected by the tool, then one should be able
to turn off the consequent energy warnings;

– Another interesting feature is the consequent impact of an applied optimisation
on test coverage, or, more specifically, which tests have to be re-executed. The
rationale behind this requirement is that executing tests is a time-consuming
activity, thus, re-executing only tests affected by the applied change would
greatly influence the productivity of the developers.

– Concerning Energy Efficiency, some practitioners would be interested to know
what changes in the source code have a higher impact on the overall energy
drawn by the system. This kind of feature can be applied at refactorings that
focus on both improving Energy Efficiency and Maintainability, thus highlight-
ing possible trade-offs between run-time and design-time qualities.

4.4.2 Technical project management

Ideal features that relate to technical project management are listed below:

– An important feature is the possibility to set a user-defined severity level for
each quality rule detected through static analysis, depending on the project
being analysed, and on the software component where the issue is detected.
The rationale behind this feature stems from the fact that different projects
require different quality levels. In fact, the concept of quality often depends
on the contract stipulated by the company and its customers. Hence, it is
important to allow the user to define the desired level of quality for each
project. For example, if the customer values Security, then security issues in
critical components can be given very high severity;

– The practitioners also expressed their interest in monitoring the extended re-
source usage over a certain threshold defined by the user (e.g. software uses
CPU over 85% for more than 10 seconds). The rationale is that the user wants
to ensure that there is a margin for a potential growth10 of the system. In par-
ticular, reserving a certain margin of the available resources, such as memory
or CPU time, for a potential future growth guarantees that the functionalities
offered by a device can be increased without requiring hardware updates, thus
extending the lifespan of the product. On top of this, it is especially important
in critical embedded systems that, in case of malfunctioning, there are enough
resources available to handle emergency situations.

– In some cases, the remote parts of some systems rely on 4G network connectiv-
ity to properly function. Practitioners working on these kind of projects have
expressed the need of estimating the data usage of their system in order to have
an idea of the (partial) cost of running the system. As the number of remote
sensors with embedded sim cards in the system increases, every bit exchanged
by a sensor has a higher impact on the final cost generated by the system.

10 Note that this concept differs from Scalability for it is meant as an indefinite increase in
the number of features that the system is able to offer.



Title Suppressed Due to Excessive Length 23

4.4.3 Monitoring quality attributes

The features related to monitoring quality attributes:

– Resource profiling (CPU, memory, disk, etc.) seemed to be very popular since
practitioners consider the quantification of run-time qualities (e.g. Reliability,
Performance, or Energy Efficiency) of interest to be of paramount importance;

– In relation with Energy Efficiency, an interesting but hard-to-satisfy need is the
automatic detection of possible optimisations of sensors and hardware usage by
the software. One example could be the number of frames per second registered
by a camera, which in case it is excessive and unneeded, it negatively influences
energy consumption;

– Technical debt monitoring is also appealing to some of the practitioners. In
particular, they deemed very useful to break down the overall technical debt
by associating specific technical debt items to individual software components;
this, in turn, helps to to better focus maintenance efforts.

Finally, there were also other, more generic features, such as security vulnera-
bility identification, bug detection, and weekly reports on design-time and run-time
qualities evolution.

5 Discussion

This study investigated how software engineers and architects, from different com-
panies from the embedded systems domain, prioritise and manage quality at-
tributes, (paying special attention to Maintainability, Dependability, and Energy
Efficiency) and the trade-offs among them.

The results from RQ1 indicate that the involved practitioners focus their de-
velopment efforts mostly on Dependability (more specifically, on Availability and
Reliability). Although they value Maintainability as a top-priority quality attribute
(as also identified by Bellomo et al. [8]), they fail to effectively measure and mon-
itor it with dedicated tools. Several factors could cause this behaviour:

– practitioners often lack theoretical knowledge on how the tools calculate met-
rics, what these metrics mean and how the metrics can be customised to better
fit their context. In addition they usually do not have enough insight into the
available tools (commercial or open-source) to be able to select the one that
fits them better;

– most projects have very short iterations that require developers to focus on
implementing functionality, while maintainability is not prioritised with the
reasoning of not having business value;

– practitioners often have a short-term perspective on a specific project e.g. due
to changing projects frequently. Thus the long-term sustainability of a project
is not an immediate concern for them;

– the contract with the customer often does not explicitly concern architecture
or code quality, thus the company might not invest on it;

– and finally, due to lack of training or company culture, developers may misun-
derstand or underestimate the shortcomings in maintainability.



24 Darius Sas, Paris Avgeriou

The majority of the trade-off experiences mentioned by the subjects (reported
in RQ2) involve Maintainability as the compromised quality attribute whereas De-
pendability or Performance are favoured in most of the cases. This finding aligns
with what has been already reported by two other studies from the investigated
literature [4,15]. It is worth mentioning that the results of the three studies (this
study, [4] and [15]) were obtained in different contexts, using different data collec-
tion methodologies and data sources, while the similarities among them appear to
be particularly strong. Therefore, these results seem to generalise well increasing
the external validity of the studies.

Regarding the explicit or implicit nature of trade-offs reported in RQ3, the
results from RQ2 indicate that the majority of the trade-offs can be considered
explicit. Through this observation alone, we could derive the conclusion that prac-
titioners are perfectly aware of almost all the trade-offs they make and the qualities
involved; yet, this would be a skewed view of reality caused by survivorship bias.
That is because practitioners do not thoroughly monitor most of the design-time
quality attributes – as emerges from RQ1 – and implicit trade-offs are harder to
remember and report. Hence, we conjecture that a significant amount of deci-
sions entail implicit trade-offs; especially those that incur technical debt due to
un-monitored quality attributes, such as Maintainability. As a result, the conse-
quences of these implicit trade-offs are usually only discovered when new function-
ality, or performance optimisations, are required to be implemented, causing the
developers to pay technical debt interest on that part of the code. The trade-off
number one reported by RQ2 is a clear example of this phenomenon.

Another common practice that frequently causes practitioners to incur tech-
nical debt is the preparation for a demo. In general, this practice can be seen as
incurring deliberate, but prudent, technical debt [16], since it is a conscious de-
cision made by the team in order to obtain a short-term advantage. One of the
reasons that we deem this as ‘prudent’, rather than ‘reckless’ [16], is because prac-
titioners foresee very little interest probability on the parts of the system they rush
before the demo; a possible explanation for this behaviour could be that customers
might require a change involving that part of the system, so it might not be worth
at all spending too much time on it. This is reasonable since practitioners are
required first and foremost to pursue customer satisfaction, rather than the long-
term sustainability of source code. However, there needs to be a concrete strategy,
after the demo, to monitor the incurred technical debt and strive to repay it as
soon as possible.

Considering the results obtained from RQ3, it is reasonable to wonder why the
subjects of the study do not use any specific process to support their trade-off
decisions. One possible explanation could be that, like most software engineering
processes, those for managing trade-offs are not as well-known in industrial practice
as in the academic domain.. Even if practitioners are familiar with such processes,
many of them require a non-trivial amount of time to learn, plan, and eventually
execute. In particular, the planning and execution overhead are rather incompat-
ible with the daily routine of a developer and strict deadlines that characterise
the industrial software domain, and, more specifically, the projects in our study.
Note that since implicit trade-offs can arise from any decision taken, it could be
necessary, depending on the case, to apply these methods on a daily basis. More-
over, some of these processes involve multiple parties and project stakeholders,
thus requiring substantial effort and calendar time to apply these methods for



Title Suppressed Due to Excessive Length 25

each decision; this does not align with teams following an agile software develop-
ment process. Also, a considerable amount of information concerning the system
is usually required, which may not always be available in a practical amount of
time, at the moment of making the decision.

An interesting aspect that emerges from the results is the prioritisation in
managing trade-offs. Pipelining every decision through a trade-off decision-support
process would add an excessive overhead; that would be counter-productive both
on the short and on the long-term. The only reasonable approach to manage trade-
offs is to rationally select decisions that require support based on the foreseeable
impact they have on the quality attributes of interest in the project, as well as
potential risks. However, this is easier said than done. Consider, for example, the
fourth trade-off experience uncovered by RQ2, where engineers could have ap-
plied a trade-off decision-making support process to avoid heavily compromising
on Maintainability and identify a new, more adequate, system architecture. They
realised that cutting corners (i.e. bypassing layers) is the easiest way to improve
performance, and did not bother considering eventual trade-offs since they were
able to gain huge performance improvements. These large gains were enough of a
reason for them to ignore long-term trade-offs, tackle their issue, and keep devel-
oping the system.

The abovementioned considerations can be generalised to companies that de-
velop B2B (Business to Business) embedded system products that are meant to
be sold to customers later on as personalised solutions. The development of these
products is done by teams that are small or medium sized (from 3-4 elements
up to 6-7) and which members work closely together, perhaps covering multiple
roles and wearing different hats depending on the development phase. Embedded
systems industry is forced by the market to move fast and innovate quickly, this
requires their teams to react quickly to changes. In this regard, smaller teams of
3-5 members have been found to be the sweet spot for productivity in relation to
the actual effort spent with a maximum of 9 elements by Putnam [31]. Moreover,
teams with less than 10 elements are also the most frequent teams in software
development [32].

Finally, we summarise some of the implications of our study for practitioners
and researchers. Researchers now have a clearer view of the embedded systems in-
dustry’s needs, practices, tools, quality attributes and trade-offs experiences, that
can be used as a foundation for future research or experimental tool development.
Furthermore, those interested in the practical aspects of technical debt manage-
ment, now have a better insight on common habits and decisions concerning incur-
ring technical debt (e.g. trade-offs and other practices from RQ2 and RQ3) and
repaying technical debt (e.g. right after a demo, when there are less uncertain-
ties and more time). Also, they have now more insights on implicit and explicit
trade-offs, which have not been studied before in the literature. Practitioners on
the other hand, can learn a lot from the reported experiences and the conclusions
drawn by this study in order to further improve their development processes. For
example, important decisions that involve quality attribute trade-offs should be
supported by adequate decision-making processes or practices that document the
qualities involved, keeping track of the decisions (e.g. using approaches proposed
by other authors [18,14,6]) and the favoured and sacrificed qualities. Such docu-
ments can be subsequently used to support future decisions. They can also become
more aware of the importance to constantly monitor design-time quality attributes



26 Darius Sas, Paris Avgeriou

using dedicated software (i.e. that monitors technical debt, like SonarQube) and
make trade-offs explicit, to the best possible extent.

6 Threats to validity

The present study is subject to limitations which can be categorised into construct
validity, external validity, and reliability following the classification proposed by
Runeson et al. [33]. Internal validity is not a concern for this study because we did
not examine causal relations [33].

6.1 Construct validity

Construct validity concerns the degree to which a study measures what it claims
to be measuring [33].

This study aimed at eliciting the knowledge of the practitioners in relation to a
specific goal, expressed as research questions. A case study protocol was carefully
designed to ensure that the questions of the interviews and of the focus group
were congruous with such a goal. Additionally, the protocol was reviewed by an
external reviewer to ascertain that indeed the data to be collected pertain to the
research questions.

A possible construct validity threat comes from the risk that not all participants
shared the same theoretical and technical knowledge of the high-level concepts cov-
ered during the interviews. To address this threat, the interviewer ensured that
each interviewee was on the same track as the others about the meaning of the
main technical terms used throughout the interview by performing a brief expla-
nation before using any of those terms. The focus group participants received a
similar explanation both in written form, prior to the session, and verbally, during
the session. Moreover, two pilot interviews were performed, and continuous feed-
back from the interviewed practitioners contributed to improving the clarity and
the scope of the questions asked in the remaining interviews. To avoid collecting
data unrelated to the initial goal, the interviewees were required to discuss only
projects respecting the criteria mentioned in Section 3.3.1. Finally, the possible
bias introduced by the two participants that took part in both interviews and fo-
cus group was mitigated in two ways: first, the semi-structured format of the focus
group was driven by a pre-defined agenda and we ensured no participant would
cause us to deviate from that agenda; second, the session was moderated by an
experienced researcher who intervened whenever necessary. Thus, given these two
factors, the two participants could not mention or make reference to any detail
related to the interview that was yet not disclosed to the whole group.

6.2 External validity

External validity concerns whether the results of the study are generalisable to
other similar environments, so that the results obtained are useful in other con-
texts. There are two possible generalisations viewpoints: concerning the subjects
and concerning embedded system fields.



Title Suppressed Due to Excessive Length 27

Concerning the subjects, our study is based on data collected from several
engineers coming from multiple companies. The engineers have a different field
of specialisation and background, and their experience ranges from junior devel-
opers to very experienced system architects (see Tables 3 and 4). This variety of
experiences covers a broad spectrum of embedded systems engineers, thus repre-
senting, at least to some extent, the needs, the practices, and the tools used by
practitioners working in the embedded systems domain.

Concerning the teams, the data collected by this study is mostly focused on
small to medium software development teams. This limitation slightly reduces
the generalisations of the results, mostly from RQ3, to teams of similar sizes.
However, teams with less than 10 members are the most common teams in software
development, regardless of the main programming language (and thus platform)
used [32], allowing these results to be applied to most teams.

Concerning the fields, this work discusses embedded systems that value De-
pendability, Performance, and Energy efficiency since most of the systems inves-
tigated perform tasks that are critical, time-bounded, or extended in duration on
devices relying on batteries. The generalisation is however limited to companies
that create systems meant for other businesses rather than to the average con-
sumer. Although these kinds of systems are only a small sample of the overall
embedded systems population, the results obtained might be generalised to other
domains that share a similar set of important quality attributes, such as industrial
automation devices (Safety and Energy Efficiency), networking (Availability and
Reliability), and scientific and measuring tools (high Performance). However, one
could argue that the study is unbalanced towards the aviation domain, since most
of our subjects come from such a domain. Nevertheless, several quality attributes
that are critical in this domain are also critical in other domains considered; for
example, Safety and Reliability are crucial attributes both in the Automotive and
in the Medical implants fields. Additionally, we considered each company as an
individual case study subject, thus each company’s needs were weighted according
to the case study design, independently of the number of units of analysis they
supplied for the study.

We cannot claim that the results can be generalised to other embedded sys-
tem types, such as general consumer electronics, or machine learning applications,
because different qualities or device types are preferred in these fields.

6.3 Reliability

Reliability, in this context, refers to the degree to which the collected data de-
pends on the specific researchers collecting and analysing it (different researchers
following the same case study design should yield the same data). To this end,
a replication package, containing the protocol and the questionnaires, is available
online2, allowing other researchers to evaluate the rigor of the design or replicate
the study.

To guarantee the reliability of the findings, all the intermediary results were
reviewed by a second researcher during all the process of analysis and the analysis
was performed following a well-known qualitative data analysis method, namely
Constant Comparative Method [9]. Additionally, the results were presented in
front of at least one practitioner of each company that took part in the study in



28 Darius Sas, Paris Avgeriou

order to ensure that the sources of the data agree with the findings of the study
and ensure their credibility.

7 Conclusions and future work

Managing quality attribute trade-offs is a complicated activity that has a consid-
erable impact on the system’s behaviour and future sustainability. The embedded
systems domain is generally more sensitive to trade-offs among quality attributes
than other domains since they have strict requirements on performance, energy
and dependability. For example, small changes to the design or code of the system
might have an undesired impact on its run-time qualities.

By analyzing and understanding how the industry deals with trade-offs on a
day-by-day basis, it is possible to propose solutions that support the industry in
addressing this complicated problem. To this end, this work investigated the needs
and practices of the embedded systems industry on quality attribute trade-offs by
directly interacting with a number of practitioners through interviews and a focus
group.

A major finding from this study is that embedded systems engineers are in
great need for tooling that supports the monitoring of run-time qualities, but at
the same time indicates possible implications on design-time qualities of the per-
formed changes. Also, we found that practitioners rarely adopt tools for monitoring
design-time quality attributes; this behaviour causes them to overlook important
trade-offs that negatively impact the cost of the project in the long-term (i.e. in-
cur technical debt). Moreover, due to strict domain requirements, practitioners
have difficulties applying methods, or processes, for explicitly managing trade-offs
among quality attributes. Thus, they focus on the major run-time qualities, such
as Dependability or Performance, that satisfy customer needs.

As future research perspective, it would be interesting to investigate the actual
costs of trade-offs in a project and compare estimations of technical debt interest
for implicit and explicit trade-offs. Another interesting work would be to investi-
gate an empirically-calculated ratio of explicit versus implicit trade-offs, allowing
one to grossly estimate the hidden technical debt principal of a project using data
of past decisions.

Acknowledgements Special thanks to Apostolos Ampatzoglou for providing suggestions and
comments on the design of this study. We would also like to thank all the companies that took
part in this study and provided us with valuable information.

This work was supported by the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 780572 SDK4ED (https://sdk4ed.eu/).

References

1. IEC 61508 - Functional safety of electrical/electronic/programmable electronic safety-
related systems. Standard, International Electrotechnical Commission, Geneva, CH (2010)

2. ISO/IEC 25010 - System and software quality models. Standard, International Organiza-
tion for Standardization, Geneva, CH (2011)

3. Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P.: The finan-
cial aspect of managing technical debt: A systematic literature review. In-
formation and Software Technology 64, 52–73 (2015). DOI 10.1016/j.infsof.

https://sdk4ed.eu/


Title Suppressed Due to Excessive Length 29

2015.04.001. URL http://dx.doi.org/10.1016/j.infsof.2015.04.001http://www.
sciencedirect.com/science/article/pii/S0950584915000762

4. Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P., Abrahamsson, P.,
Martini, A., Zdun, U., Systa, K.: The Perception of Technical Debt in the Embedded
Systems Domain: An Industrial Case Study. In: Proceedings - 2016 IEEE 8th International
Workshop on Managing Technical Debt, MTD 2016, pp. 9–16 (2016). DOI 10.1109/MTD.
2016.8

5. Barbacci, M., Klein, M.H., Longstaff, T., Weinstock, C.: Quality Attributes. Tech. rep.,
Carnegie Mellon University, Software Engineering Institute, Pittsburgh (1995)

6. Barney, S., Petersen, K., Svahnberg, M., Aurum, A., Barney, H.: Software quality trade-
offs: A systematic map. Information and Software Technology 54(7), 651–662 (2012).
DOI 10.1016/j.infsof.2012.01.008. URL http://dx.doi.org/10.1016/j.infsof.2012.01.
008http://linkinghub.elsevier.com/retrieve/pii/S0950584912000195

7. Bass, L., Clements, P., Kazman, P.: Software Architecture in Practice, 3rd edn. Addison-
Wesley Professional (2012). URL https://dl.acm.org/citation.cfm?id=2392670

8. Bellomo, S., Gorton, I., Kazman, R.: Toward Agile Architecture: Insights from 15 Years
of ATAM Data. IEEE Software 32(5), 38–45 (2015). DOI 10.1109/MS.2015.35. URL
https://ieeexplore.ieee.org/document/7024074/

9. Boeije, H.: A Purposeful Approach to the Constant Comparative Method in the Analysis
of Qualitative Interviews. Quality & Quantity 36, 391–409 (2002). DOI 10.1023/A:
1020909529486

10. Brereton, P., Kitchenham, B., Budgen, D., Li, Z.: Using a protocol template for case
study planning. In: Proceedings of the 12th international conference on Evaluation and
Assessment in Software Engineering (2008). DOI 10.1145/2601248.2601276

11. Clements, P., Kazman, R., Klein, M., et al.: Evaluating software architectures. Tsinghua
University Press Beijing (2003)

12. Corrêa, U.B., Lamb, L., Carro, L., Brisolara, L., Mattos, J.: Towards Estimating Phys-
ical Properties of Embedded Systems using Software Quality Metrics. In: 2010 10th
IEEE International Conference on Computer and Information Technology, pp. 2381–2386.
IEEE (2010). DOI 10.1109/CIT.2010.409. URL http://ieeexplore.ieee.org/document/
5578300/

13. Erlikh, L.: Leveraging legacy system dollars for e-business. IT Professional 2(3), 17–23
(2000). DOI 10.1109/6294.846201

14. Falessi, D., Cantone, G., Kazman, R., Kruchten, P.: Decision-making techniques for soft-
ware architecture design: A comparative survey. ACM Comput. Surv. 43(4), 33:1–33:28
(2011). DOI 10.1145/1978802.1978812. URL http://doi.acm.org/10.1145/1978802.
1978812

15. Feitosa, D., Ampatzoglou, A., Avgeriou, P., Nakagawa, E.Y.: Investigating Quality Trade-
offs in Open Source Critical Embedded Systems. In: Proceedings of the 11th International
ACM SIGSOFT Conference on Quality of Software Architectures - QoSA ’15, pp. 113–122
(2015). DOI 10.1145/2737182.2737190

16. Fowler, M.: The technical debt quadrant (2014). URL https://martinfowler.com/bliki/
TechnicalDebtQuadrant.html. [Online; Accessed: September 2018]

17. Glaser, B.G., Strauss, A.L., Strutzel, E.: The discovery of grounded theory; strategies for
qualitative research. Nursing research 17(4), 364 (1968)

18. van Heesch, U., Avgeriou, P., Hilliard, R.: A documentation framework for architecture
decisions. Journal of Systems and Software 85(4), 795–820 (2012). DOI http://dx.doi.
org/10.1016/j.jss.2011.10.017

19. IEEE: Ieee standard for a software quality metrics methodology. IEEE Std 1061-1992
(1993). DOI 10.1109/IEEESTD.1993.115124

20. JC Laprie: Dependability: Basic Concepts and Terminology,. In: Dependability: Ba-
sic Concepts and Terminology, pp. 1–12. Springer, Vienna (1992). DOI 10.1007/
978-3-7091-9170-5 1

21. Knight, J.: Dependability of embedded systems. Proceedings of the 24th International
Conference on Software Engineering. ICSE 2002 pp. 685–686 (2002). DOI 10.1109/ICSE.
2002.1008029. URL http://portal.acm.org/citation.cfm?doid=581339.581445

22. Kontio, J., Bragge, J., Lehtola, L.: The Focus Group Method as an Empirical Tool in Soft-
ware Engineering, pp. 93–116. Springer London (2008). DOI 10.1007/978-1-84800-044-5 4.
URL https://doi.org/10.1007/978-1-84800-044-5_4

23. Koopman, P.: Embedded system security. Computer 37(7), 95–97 (2004). DOI 10.1109/
MC.2004.52. URL http://dx.doi.org/10.1109/MC.2004.52

http://dx.doi.org/10.1016/j.infsof.2015.04.001 http://www.sciencedirect.com/science/article/pii/S0950584915000762
http://dx.doi.org/10.1016/j.infsof.2015.04.001 http://www.sciencedirect.com/science/article/pii/S0950584915000762
http://dx.doi.org/10.1016/j.infsof.2012.01.008 http://linkinghub.elsevier.com/retrieve/pii/S0950584912000195
http://dx.doi.org/10.1016/j.infsof.2012.01.008 http://linkinghub.elsevier.com/retrieve/pii/S0950584912000195
https://dl.acm.org/citation.cfm?id=2392670
https://ieeexplore.ieee.org/document/7024074/
http://ieeexplore.ieee.org/document/5578300/
http://ieeexplore.ieee.org/document/5578300/
http://doi.acm.org/10.1145/1978802.1978812
http://doi.acm.org/10.1145/1978802.1978812
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://portal.acm.org/citation.cfm?doid=581339.581445
https://doi.org/10.1007/978-1-84800-044-5_4
http://dx.doi.org/10.1109/MC.2004.52


30 Darius Sas, Paris Avgeriou

24. Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: From metaphor to theory and prac-
tice. IEEE Software 29(6), 18–21 (2012). DOI 10.1109/MS.2012.167

25. Mallick, D.N., Schroeder, R.G.: An Integrated Framework for Measuring Product De-
velopment Performance in High Technology Industries. Production and Operations
Management 14(2), 142–158 (2009). DOI 10.1111/j.1937-5956.2005.tb00015.x. URL
http://doi.wiley.com/10.1111/j.1937-5956.2005.tb00015.x

26. Martini, A., Bosch, J.: Towards Prioritizing Architecture Technical Debt: Information
Needs of Architects and Product Owners. In: 2015 41st Euromicro Conference on Software
Engineering and Advanced Applications, pp. 422–429. IEEE (2015). DOI 10.1109/SEAA.
2015.78. URL http://ieeexplore.ieee.org/document/7302484/

27. Mcdonagh, D., Msc, P., Mdrs, M., Bruseberg, A.: Using Focus Groups to Support New
Product Development. Institution of Engineering Designers Journal (September) (2000)

28. Mentis, A., Katsaros, P., Angelis, L.: Synthetic Metrics for Evaluating Runtime Quality
of Software Architectures with Complex Tradeoffs. In: 2009 35th Euromicro Conference
on Software Engineering and Advanced Applications, pp. 237–242. IEEE (2009). DOI
10.1109/SEAA.2009.84. URL http://ieeexplore.ieee.org/document/5349844/

29. Oliveira, M.F., Redin, R.M., Carro, L., Lamb, L., Wagner, F.: Software Quality Metrics
and their Impact on Embedded Software. In: 2008 5th International Workshop on Model-
based Methodologies for Pervasive and Embedded Software, Mompes, pp. 68–77 (2008).
DOI 10.1109/MOMPES.2008.11

30. Papadopoulos, L., Marantos, C., Digkas, G., Ampatzoglou, A., Chatzigeorgiou, A.,
Soudris, D.: Interrelations between Software Quality Metrics, Performance and Energy
Consumption in Embedded Applications. In: Proceedings of the 21st International Work-
shop on Software and Compilers for Embedded Systems - SCOPES ’18, pp. 62–65.
ACM Press, New York, New York, USA (2018). DOI 10.1145/3207719.3207736. URL
http://dl.acm.org/citation.cfm?doid=3207719.3207736

31. Putnam, L.: A General Empirical Solution to the Macro Software Sizing and Estimating
Problem. IEEE Transactions on Software Engineering SE-4(4), 345–361 (1978). DOI
10.1109/TSE.1978.231521. URL http://ieeexplore.ieee.org/document/1702544/

32. Rodŕıguez, D., Sicilia, M.A., Garćıa, E., Harrison, R.: Empirical findings on team size and
productivity in software development. Journal of Systems and Software 85(3), 562–570
(2012). DOI 10.1016/j.jss.2011.09.009. URL https://www-sciencedirect-com.proxy-ub.
rug.nl/science/article/pii/S0164121211002366

33. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software Engi-
neering. Wiley (2012). DOI 10.1002/9781118181034

34. Sherman, T.: Quality Attributes for Embedded Systems. In: Advances in Computer and In-
formation Sciences and Engineering, pp. 536–539. Springer Netherlands, Dordrecht (2008).
URL http://link.springer.com/10.1007/978-1-4020-8741-7_95

35. van Solingen, R., Basili, V., Caldiera, G., Rombach, H.D.: Goal Question Metric (GQM)
Approach. In: Encyclopedia of Software Engineering. Wiley (2002). DOI 10.1002/
0471028959.sof142

36. Wahler, M., Eidenbenz, R., Monot, A., Oriol, M., Sivanthi, T.: Quality Attribute Trade-
Offs in Industrial Software Systems. In: 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), pp. 251–254. IEEE (2017). DOI 10.1109/ICSAW.2017.
10. URL http://ieeexplore.ieee.org/document/7958498/

http://doi.wiley.com/10.1111/j.1937-5956.2005.tb00015.x
http://ieeexplore.ieee.org/document/7302484/
http://ieeexplore.ieee.org/document/5349844/
http://dl.acm.org/citation.cfm?doid=3207719.3207736
http://ieeexplore.ieee.org/document/1702544/
https://www-sciencedirect-com.proxy-ub.rug.nl/science/article/pii/S0164121211002366
https://www-sciencedirect-com.proxy-ub.rug.nl/science/article/pii/S0164121211002366
http://link.springer.com/10.1007/978-1-4020-8741-7_95
http://ieeexplore.ieee.org/document/7958498/

	Introduction
	Background and Related work
	Case study design
	Results
	Discussion
	Threats to validity
	Conclusions and future work

