
1

An architectural technical debt index based on
machine learning and architectural smells

Darius Sas, Paris Avgeriou

Abstract—A key aspect of technical debt (TD) management is the ability to measure the amount of principal accumulated in a system.
The current literature contains an array of approaches to estimate TD principal, however, only a few of them focus specifically on
architectural TD, but none of them satisfies all three of the following criteria: being fully automated, freely available, and thoroughly
validated. Moreover, a recent study has shown that many of the current approaches suffer from certain shortcomings, such as relying
on hand-picked thresholds.
In this paper, we propose a novel approach to estimate architectural technical debt principal based on machine learning and
architectural smells to address such shortcomings. Our approach can estimate the amount of technical debt principal generated by a
single architectural smell instance. To do so, we adopt novel techniques from Information Retrieval to train a learning-to-rank machine
learning model (more specifically, a gradient boosting machine) that estimates the severity of an architectural smell and ensure the
transparency of the predictions. Then, for each instance, we statically analyse the source code to calculate the exact number of lines of
code creating the smell. Finally, we combine these two values to calculate the technical debt principal.
To validate the approach, we conducted a case study and interviewed 16 practitioners, from both open source and industry, and asked
them about their opinions on the TD principal estimations for several smells detected in their projects. The results show that for 71% of
instances, practitioners agreed that the estimations provided were representative of the effort necessary to refactor the smell.

Index Terms—Machine Learning, Technical Debt, Architectural Smells, Arcan, Learning-to-rank, Case study

F

1 INTRODUCTION

The technical debt (TD) metaphor borrows the concepts of
principal and interest from the financial domain and uses
them to convey key software maintenance concepts. In
particular, debt principal indicates the effort required to
fix a current, non-optimal solution, whereas debt interest
indicates the recurrent effort necessary to keep maintaining it
[1]. As an example, consider a portfolio management system
that requires massive revisions in order to accommodate
for the changes required by the customer [2]. The inter-
est represents the recurrent costs of making the revisions,
whereas the principal is the cost of completely replacing the
solution with a new one that would allow these changes to
be seamless.

The importance of managing TD is ever increasing,
especially for architectural TD (ATD), as architectural de-
cisions were found to be the greatest source of TD faced by
practitioners [3]. A key part of managing TD is to be able to
measure the amount of TD principal incurred by an applica-
tion, but this has not yet been effectively addressed in the
state of the art. Theoretically, the problem of measuring the
TD principal requires defining a function that transforms
maintenance-related data points (metrics, smells, violations
of rules or principles, etc.) into a single number representing
the overall effort required to fix them. Over the past years,
several studies proposed approaches to estimate the amount
of debt principal accrued by an application [4], [5], both at
the architectural level and at code or design levels; however,

• Darius Sas and Paris Avgeriou are with the Bernoulli Insti-
tute for Mathematics, Computer Science, and Artificial Intelligence,
University of Groningen, Groningen, Netherlands 9714GV. E-mail:
{d.d.sas,p.avgeriou}@rug.nl, darius.sas@outlook.com.

most of these studies relied on techniques that have known
shortcomings and resulted in estimation functions that were
not thoroughly validated [4]. A common weakness shared by
many of these studies is the use of hand-picked thresholds
or relying on benchmarks that include arbitrary systems (of
arbitrary size, domain, etc.) to determine these thresholds
(see Section 10 for more details). Moreover, while some of
these approaches are fully automated, they are no freely-
available implementations that can be used by others to
replicate the results obtained.

In this paper, we propose a novel approach to estimate
ATD principal, called ATDI (Architectural Technical Debt
Index), by adopting machine learning (ML) to overcome the
aforementioned shortcomings of existing approaches. The
main advantage of using ML over thresholds or benchmarks
is that ML does not require picking these manually; the
model will automatically deduce these from the data.

In our approach, we use architectural smells (AS) as the
main proxy for measuring ATD. AS represent decisions that
violate design principles and result in undesired dependen-
cies, overblown size, and excessive coupling [6], [7] among
the classes and packages of a system. The main advantage
of using AS as a proxy for ATD is that we can estimate
the amount of principal each AS contributes to the system
while also being easy to detect automatically with high
precision (see Section 2). This provides a benefit over simply
using metrics as proxies for ATD because using AS is: a)
actionable as practitioners can make prioritisation decisions
using AS; and b) targeted as practitioners know exactly
what the problem is, where it is, and how it should be
addressed. The main disadvantage of using AS is that they
are but a part of all the possible forms that ATD can assume,
therefore it is not guaranteed that all of the ATD principal is

2

represented. Nevertheless, AS are the most common form of
ATD studied in the literature [8], they have been recognised
as particularly problematic in industry [9], [10], and they
have been used by other approaches in the literature as
proxies for estimating the whole ATD principal [11], [12].
Further details on the choice of AS as a threat to validity are
discussed in Section 9.

Our approach, uses ML to calculate the severity of
each AS instance (i.e. how harmful it is to Maintainabil-
ity/Evolvability) and then combines it with precise static
analysis of the source code to determine the lines of code
responsible for the smell (which we use to gauge the size
of the smell within the system); this combination is used to
calculate the ATD principal as an index. To train the machine
learning model (a gradient boosting machine, to be precise),
we create a data set using techniques from Information
Retrieval to compare AS and rank them by their severity.
The results of the training show that the ML model can
successfully rank AS by their severity with a high degree
of accuracy by achieving a .97 of NDCG (Normalized
Discounted Cumulative Gain [13]), the de facto standard
metric used to evaluate the type of ML model we used in
our approach (see Section 4.3.2 for details). Moreover, to
ensure the predicted severity is justified (e.g. not biased by
a variable irrelevant to a specific smell) and transparent,
we employ a state-of-the-art technique, called SHAP [14], to
visually analyse a small sample of predictions. The results
show how exactly the considered variables contribute to the
predictions.

After ensuring the ML model is predicting severity cor-
rectly, we validate the output of the whole approach. We
inspect whether the estimations provided by our approach
are actually relevant to developers by checking whether
they are representative of the repayment effort perceived
and meaningful with respect to each other (e.g. this smell
requires twice the effort to refactor than this other smell,
and has a double ATDI value). To this end, we interview
16 practitioners from both the open source and industrial
world. Each interviewee is shown a number of AS instances
in their own systems, as well as the respective ATD principal
estimation provided by our approach. In 71% of the cases,
interviewees totally agree with the estimations provided by
our approach and deem them representative of the effort
necessary to repay the debt.

This paper’s structure is as follows: Section 2 sum-
marises the theory of architectural smells and the tool
used to detect them; Section 3 introduces the approach we
developed to estimate ATD principal as an index; Section
4 elaborates on the case study design, including the data
collection and analysis methodologies; Section 5 presents
some descriptive statistics about ATDI; Sections 6 and 7
present the results of the two research questions; Section 8
discusses possible implications of the results for researchers
and practitioners; Section 9 describes the threats to the
validity of this study and how they were mitigated; Section
10 lists the related work and compares it with the results
obtained by this study; and finally, Section 11 concludes the
paper and lists possible future work opportunities.

2 ARCHITECTURAL SMELLS

The AS considered in this study are the following 4 types:
Cyclic Dependency (CD), Unstable Dependency (UD), Hub-
like Dependency (HD), and God Component (GC). The first
sub-section provides a brief definition for each type with
few details on how they are detected by the used tool; for
further details, we refer the reader to Arcelli et al. [15].
The second and third sub-sections provide respectively a
brief description of the tool used to detect architectural
smells, called ARCAN, and the smell characteristics used to
calculate ATDI.

2.1 Definition and implications

Lippert and Roock [6] define architectural smells as viola-
tions of recognised design principles (such as the ones de-
fined by Martin [16]) that result in undesired dependencies,
overblown size, and excessive coupling [7]. Architectural
smells are an indication that something may be problematic,
but they do not necessarily imply so.

This definition of architectural smells may sound very
similar to the definition of code smells provided by Kent
Beck1. However, there is a clear distinction between the
two: Architectural smells involve multiple classes, packages,
architectural layers, or even sub-systems [6], whereas code
smells (CS) arise at line of code, method, or class level
[17]. This means that architectural smells, contrary to code
smells, require large refactorings in order to be removed from
the system [6].

It is important to mention that previous work provides
empirical evidence that the AS considered in this study and
the most well-known CS are independent entities and that
there is no correlation between the presence of AS and CS
[18].

Both AS and CS manifest themselves in different forms
that are commonly referred to as different types. Some
examples of CS types are Duplicated Code, Long Method, and
Large Class [17].

In this study, we chose to focus on four types of AS:
Cyclic Dependency (CD), Hub-Like Dependency (HL), Un-
stable Dependency (UD), and God Component (GC) [6],
[15], [19]. We opted to study these AS because they are some
of the most prominent architecture smells, and there already
exists tools that support their automatic detection [15], [20].

2.1.0.1 Unstable dependency (UD): This smell rep-
resents a package that depends upon a significant number
of packages that are less stable than itself. The stability of a
package is measured using Martin’s instability metric [16],
which measures the degree to which a package is suscepti-
ble to change because of its dependencies. The tool ARCAN
uses a 30% threshold [20] on the number of packages that
are less stable to detect this smell.

The main problem caused by UD is that the probability
to change the main package grows higher as the number of
unstable packages it depends upon grows accordingly. This
increases the likelihood that the packages that depend upon
it change as well when it is changed (ripple effect), thus
inflating future maintenance efforts.

1. Read https://wiki.c2.com/?CodeSmell for more info.

https://wiki.c2.com/?CodeSmell

3

2.1.0.2 Hublike dependency (HL): This smell repre-
sents an artefact (called hub) where the number of ingoing
and outgoing dependencies is higher than the median in the
system [15]. A hublike dependency can be detected both at
the package and at the class level.

The implications of this smell for development activities
are once again concerning the probability of change and the
ease of maintenance. Making a change to any of the artefacts
that the hub depends upon may be very hard [16] because
many other artefacts may indirectly depend on them even
though there is only one artefact directly depending on them
(the hub). Additionally, the hub is also overloaded with
responsibility and has a high coupling. This structure is thus
not desirable, as it increases the potential effort necessary to
make changes to all of the elements involved in the smell.

2.1.0.3 Cyclic dependency (CD): This smell repre-
sents a dependency cycle among a number of artefacts; there
are several software design principles that suggest avoiding
creating such cycles [6], [16], [21], [22].

Cycles affect mostly complexity, but their presence also
has an impact on compiling (causing the recompilation of
big parts of the system), testing (forcing to execute unre-
lated parts of the system, increasing testing complexity),
or deploying (forcing developers to re-deploy unchanged
components) [6].

2.1.0.4 God component (GC): This smell represents
a component (or package, in Java) that is considerably
larger in size (i.e. lines of code) than other components in
the system [6]. Originally, GC was defined using a fixed
threshold on the lines of code [6], ARCAN however uses a
variable benchmark based on the frequencies of the number
of lines of code of the other packages in the system [23].
Adopting a benchmark to derive the detection threshold fits
particularly well in this case because what is considered a
“large component” depends on the size of other components
in the system under analysis and in many other systems. A
benchmark allows to make precisely this kind of compar-
isons.

God components aggregate too many concerns together
in a single package and they are generally a sign that there
is a missing opportunity for splitting up the package into
multiple sub-packages. God components are often the result
of several small incremental changes over a long period of
time, sometimes effectively implementing a lot of the overall
functionality of the system. Over time, the understandability
of the component deteriorates along with the reusability of
the individual parts of the component, as developers are not
keen to use a piece of software that is difficult to understand
[6].

2.2 Arcan

To detect AS, we used a tool called ARCAN. ARCAN’s
detection capabilities were validated by previous studies
and obtained a precision ranging from 70% to 100% [9], [20],
depending on the project and type of smell considered.

ARCAN parses Java (by relying on Spoon [24]), C, and
C++ source code files to create a dependency graph where
files, components, classes and packages are all represented
using different nodes with different labels. Dependencies,
and other relationships between nodes, are represented

TABLE 1: Architectural smell characteristics relevant in this
study. PCT: Package Containment Tree

Name Description

Size The number of artefacts affected by the smell.
Number of edges The number of dependency edges among the

affected artefacts.
PageRank The importance of the artefacts affected by the

smell within the dependency network of the sys-
tem [12].

Affected Type The type of the affected artefact (i.e. either class
or package)

PCT Depth* Depth refers to the number of packages that
are an ancestor of the affected element in the
system’s package hierarchy (i.e. the PCT) [26].

PCT Distance* The number of packages that need to be tra-
versed in the PCT to reach an affected element of
the smell starting from another affected element
[26], [27].

Shape (for CD only) The shape of a cycle: tiny, circle,
chain, star, clique (from [27]).

Instability gap (for UD only) Is the difference between the in-
stability of the main component and the average
instability of the dependencies less stable than
the component itself [15].

*Since every smell affects multiple elements, and PCT metrics are calculated
individually on the classes and packages affected by the smell, we aggregate

them as a mean and standard deviation.

using edges that connect the dependant to its dependencies
with an outgoing, labelled edge (e.g. if artefact A depends
on artefact B, then the dependency graph contains a directed
edge connecting A to B.). The project’s structural information
contained in the dependency graph is then used to calculate
several software metrics (e.g. fan-in, fan-out, instability [16],
etc.) and then detect architectural smells by recognising their
structure in the dependency graph.

Compared to other tools, ARCAN uses only software
metrics and structural dependencies in order to detect archi-
tectural smells. This makes ARCAN different from tools such
as DV8 [11] (a tool used by related work) which also requires
the use of change metrics. The command line version of
ARCAN used for this study is available in the replication
package [25].

2.3 Smell characteristics

An architectural smell characteristic is a property or attribute
of an architectural smell instance [19]. An architectural smell
instance is a concrete occurrence of a type of architectural
smell. For each architectural smell type, one can measure
different characteristics. In this work, we are going to use
architectural smell characteristics as features (i.e. inputs) for
a machine learning model (more details in Section 3.3.1).
The characteristics considered in this work are described in
Table 1.

3 THE APPROACH

This section describes the approach we designed to calculate
an architectural technical debt index, or ATDI. As discussed
in Section 1, our approach is based exclusively on architec-
tural smells (AS) and does not consider other types or forms
of technical debt.

4

3.1 Indexes and cost estimates

Theoretically, technical debt (TD) principal is defined as
the cost necessary to develop a better solution than the
currently implemented one [1], easing future maintenance
and evolution efforts. Similarly, architectural technical debt
(ATD) principal refers to the same concept, but focuses on
architectural solutions only. Several tools, both commercial
and open source [4], [5], claim to estimate the cost to repay
the TD principal of a software system using just source
code artefacts. In practice, however, calculating the exact
cost of remediation is a rather ambitious task, as several
factors – both internal and external to the codebase and
the company – may influence it and vary depending on
context, organisation and country [28], [29], [30]. If these are
not taken into account, the estimate could be imprecise and
not reflect the actual cost. An index, on the other hand, is
not associated with an exact cost, but rather it correlates
with the effort necessary to remediate the technical debt
incurred by the current solution. It also does not make
any assumptions regarding the cost of development, thus
avoiding misleading engineers and misrepresenting the ac-
tual costs. Therefore, we opted to treat the ATD principal
calculated through our approach as an index, rather than as
an estimation of the cost.

To link our approach to the effort needed to refactor, we
use static analysis to extrapolate the exact lines of code that
create the AS as well as the metrics listed in Table 1.

The importance of choosing an index over a cost esti-
mate emerged during the design of our approach when
we received feedback on the matter from two industrial
experts. Both experts suggested to avoid a cost estimation as
this would spark unnecessary discussion and create contro-
versy and confusion among the developers, architects, and
managers who would have different opinions, ultimately
leading to distrust against the provided values. Note that
this anecdotal evidence is put to the test by the validation
process described in the study design section (Section 4).

To sum up, we do not aim at estimating the cost impact
of technical debt [1], but only the effort required to fix the
current solution [1] expressed as an index. Using an index
over a monetary estimation allows for a more concise and
unbiased representation of the effort necessary to remediate
the incurred TD. Related work from Section 10.1 and Table
6 show that this is also a common choice in the literature
when estimating ATD principal.

3.2 Definition

The simplest and most intuitive way of estimating the ATD
index based on AS is by summing up the individual indexes
of each smell [31]. This is the solution adopted by previous
studies as well [12], [32], [33], [34] and (1) allows users to
quickly understand the impact of one instance on the overall
value of the index, and (2) it resonates with the financial
metaphor, where the total amount of debt is the sum of all
the debts. Also note that AS are used as an indicator of the
presence of debt, thus acting as a proxy for its estimation.

Formally, we define the ATD principal index as

ATDI(P) =
SP∑
i

ATDI(xi) (1)

where xi are the architectural smells SP detected in the
project P . This value can be normalised by the size of the
project P in lines of code (LOC) to obtain the density of
ATDI per 1000 lines of code, to allow us to compare values
obtained from different projects

ATDIdensity(P) =
ATDI(P)

LOC(P)
· 1000 (2)

The density is expressed for every 1000 LOC in order to
reduce the number of decimals in the case of very high
values of LOC(P).

The index of a single smell is calculated as the product
of:

ATDI(xi) = s(xi) ·m(xi) (3)

a) Severity, calculated by the function s : SP → [1, 10].
Severity was used consistently in previous studies to
estimate TD principal [12], [33], [34]. In our case, we
adopted Marinescu’s [34] approach to define severity in
the range [1, 10] with higher values representing more
severe smells2;

b) Extent, calculated by the function m : SP → N≥1 and
defined as the number of the lines of code that con-
tribute to the creation of the smell, giving an estimation
of its size within the system. The extent, or number of
lines of code, was used for estimating the amount of
effort in previous studies on technical debt [35], [36],
[37] and non-technical debt related work as well as a
proxy of complexity [38], [39].

The definition from Equation 3 allows us to model
the intuition that more severe smells are more detrimental to
maintainability (as well as evolvability) [12] and more extended
smells require more effort to be removed [37]. Therefore, ATDI is
a proxy for the effort necessary to repay the ATD present in
the system affecting both Maintainability and Evolvability.

More details on the information used by previous ap-
proaches and existing tools to calculate their indexes are
summarised by Avgeriou et al. [5] and Khomyakov et al.
[4]. In the following two sub-sections we elaborate on the
definition of the two concepts, i.e. severity and extent.

3.2.1 Defining severity

In software engineering, the term severity is commonly used
to describe how harmful a certain type of issue (e.g. archi-
tectural smells) is with respect to (w.r.t) a certain quality
attribute (e.g. Maintainability or Evolvability). Severity is
used to gauge the impact of different instances of the same
type of smell and decide which one is more harmful to the
system [34].

Similarly to the case of code smells [40], [41] and design
flaws [34], the severity of an architectural smell is deter-
mined by the properties of the structure of the smell instance
itself, measured by smell characteristics [19] (Table 1). For
example, assuming all the other characteristics are equal, a
cycle with 5 nodes and 5 edges is much easier to refactor
than a smell with 5 nodes and 20 edges.

Marinescu [34], Vidal et al. [42], and Tsantalis et al.
[43] proposed approaches to calculate severity based on

2. There is also a more practical reason described in Section 3.3.1.

5

a number of metrics related to the flaw in question, in-
cluding cohesion, coupling, past changes, and complexity.
Our approach is similar as we calculate severity by using
architectural smell characteristics [19] to measure certain
properties of a smell instance (and therefore, indirectly, of
the artefacts affected). Smell characteristics were used in
previous studies on architectural smells for calculating the
ATD index [12], and to manually determine the severity
label for a code smell to be used by machine learning models
as well [40].

3.2.2 Defining extent
We define as the extent of an an architectural smell the
number of lines of code in a source code artefact that break
the rules used to detect an architectural smell. For example,
in the case of a cyclic dependency between two files, the
lines of code in those two files that are responsible for the
dependencies creating the cycle among them. In general, the
purpose is to calculate how extended a smell is within the
system in order to gauge the amount of complexity that a
developer needs to understand and tackle while applying
meaningful changes to the codebase in order to remove the
smell. The LOC metric was consistently used by previous
studies as a proxy of complexity [38], [39], [44]. The idea
behind selecting the extent of a smell as the proxy for the
effort necessary to remove the smell is that the more lines
of code the smell is made of, the more coupled it is to that
specific source code artefact (class, package, etc.).

Practically speaking, we take into account how many
lines of code of the system must be changed, or must be
taken into consideration (understood), in order to eliminate
the smell from the code base. This approach resembles
previous research on the topic [37], where lines of code
where used as a starting point for the estimation of the
effort.

3.3 Calculation of the index
This section details the steps necessary to calculate ATDI
(Equation 3) for the architectural smell types we take into
consideration in this study.

3.3.1 Calculating severity
The severity of an architectural smell depends on several
factors, making it hard to derive rules of thumb for de-
termining when a smell is more severe than another. For
example, a Cyclic dependency A between 10 classes may
be less severe than a cycle B between 5 packages, despite
affecting more elements (i.e. larger size). Yet, another cyclic
dependency C affecting 10 classes can be more severe than
B if the elements belonging to C cross package boundaries
[26]. Therefore, just relying on one or more smell character-
istics (e.g. size and affected type) is not very helpful.

To calculate severity, we will instead use a specific class
of machine learning (ML) models that are able to rank
different smell instances in order of their severity. This class
of ML models is typically referred to as learning to rank
(LTR) models [45]. A LTR model is trained using a list of
documents (e.g. web pages) that have some partial order
defined among them (e.g. relevance to a certain query). The
order is typically induced by giving a numerical or ordinal

score to each item in the list. The goal of the LTR model is
to produce a permutation of items (i.e. rank them) in new
lists (i.e. not part of the training set). Formally, given a list
of architectural smells X = x1, x2, ..., xn, LTR models try
to learn a function f(X) that predicts the relevance (i.e. the
severity in our case) of any given smell xi. The relevance is
usually a numerical or ordinal score: the higher the value,
the more relevant (severe) the smell is.

The main difference of LTR models from traditional
classification or regression models, is the training process.
An LTR model tries to optimise for the ranking of the
whole training set, whereas classification and regression
models try to minimise the error of the predicted and actual
label/value of each entry in the training set. Using the
terminology from our domain, LTR models try to minimise
the number of times a more severe smell is ranked below a
less severe smell.

LTR models are trained using labels that determine
relevance, where higher values imply higher relevance3.
Therefore, our data set will have pairs such as 〈xi, s〉, where
xi is the smell and s ∈ [1, 10] ⊂ N is the severity label that
our algorithm is trying to learn. A smell xi is represented
using its characteristics as features, such as the number of
elements affected, the number of edges, the page rank in
the dependency network of the system, and several others.
More details on the training process and creation of the data
set are provided in Section 6.

3.3.2 Calculating extent
The calculation of the extent of an architectural smell de-
pends on the rules used to detect the architectural smell.
For our approach, we are focusing on four types of architec-
tural smells: Cyclic Dependency (CD), Hublike Dependency
(HL), Unstable Dependency (UD) and God Component
(GC). The calculation of m from Equation 3 for these four
smell types translates into two different cases:
• for dependency-based smells (CD, HL, UD), we have

the number of lines of code generating and using the
dependencies between the artefacts taking part in the
same smell;

• for size-based smells (GC), we have the number of
lines of code exceeding the median lines of code of
packages/components in the system.

The upcoming paragraphs will cover in detail the reasoning
behind these choices.

3.3.2.1 Dependency-based smells: For CD, HL and
UD, the number of lines of code using and generating
the dependencies creating the smell has been selected as a
proxy to calculate m. Effectively, these are the lines of code
contributing to the smell creation (i.e. the dependencies),
and therefore they must be taken into consideration during
refactoring, thus it can be a indicator for the refactoring
effort. However, this does not imply that all dependencies
are going to be removed, but the complexity of removing
the smell is a function of the number of lines of code creating and
using those dependencies.

As an example to better understand the reasoning be-
hind this approach, let us take into consideration the case
of a CD smell instance between two classes A and B (see

3. See https://lightgbm.readthedocs.io/en/latest/Parameters.html.

https://lightgbm.readthedocs.io/en/latest/Parameters.html

6

Fig. 1: An example of Cyclic Dependency removal. Based on
Lippert’s example [6, p. 128].

Figure 1). In order to remove it, the traditional way [6,
p. 128] is to split B in two (or more) segments B1 and
B2 and separate dependencies in such a way that A de-
pends on B1 (or A → B1), and B2 depends on A (or
B2 → A). This process implies that the developer must
be familiar with all dependencies between A and B. For
the sake of the example, let us assume that each line of
code contains one dependency only. Then, we calculate,
we count all the lines of code in A that use or create the
dependency A → B, and those for B → A. Then we
have m(x) = m(A → B) + m(B → A) = 50 + 15 = 65
LOC, which is the number of lines of code one needs to
understand before deciding on how to split B and proceed
with the refactoring. In Figure 1, only m(B → A) = 15 LOC
were eventually moved to a new class, but the whole 65
lines of code were needed be understood before refactoring
the 15 creating the dependency B → A.

An architectural smell is comprised of several artefacts.
Each artefact has a series of dependencies towards other
artefacts, which we consider as edges (i.e. A → B). We
calculate

m(x) =
Ex∑

w(a→ b) (4)

where

Ex = {a→ b|a, b are classes or packages affected by smell x}

and w(a→ b) calculates the number of times artefact a uses
artefact b. By use we mean any time a declares a variable of
type b, invokes a method on an object of type b, accesses a
field of an object of type b, or inherits from type b. The way
we calculate dependencies complies with the benchmark
and guidelines provided by Pruijt et al. [46].

One can also see the m function as a special, finer-
grained case of the dependency edge weight function de-
fined by Laval et al. [26], where instead of counting the
import statements only, we count all the lines of code
directly using such dependency.

An advantage of m(x) is that it allows to handle the
overlap between smells at a fine-grained level and avoid
overestimation of the final effort calculated to remove all
the smells (i.e. a single edge may be responsible for the
creation of multiple smells). This is simply achieved using
the following generalisation of Equation 4:

m(x) =
Ex∑ w(a→ b)

o(a→ b)
(5)

where the contribution of each edge a → b is weighted
by the number of smells that edge contributes creating,
calculated by o(a→ b).

Another advantage is that it allows to identify which
edges yield the highest return on effort invested if removed,
because one can target the edge with lowest use and highest
number of smells passing through it. Additionally, it allows
to only include the edges that actually create the smell, for
example, for UD smell, m(x) may only include the edges
that create dependencies towards less stable packages.

In ARCAN, this feature is implemented by relying on
Spoon [24] to precisely calculate the lines of code generating
a dependency (as defined by Pruijt et al. [46]).

3.3.2.2 Size-based smells: God Component is a
smell that is detected based on the number of lines of code
an artefact has (calculated summing up the LOC of the
directly contained files) and whether it exceeds a certain
threshold. The threshold is calculated using an adaptive
statistical approach that takes into consideration the number
of LOC of the other packages in the system and in a
benchmark of over 100 systems [23]. The adaptive threshold
is defined in such a way that it is always larger than the
median lines of code of the packages/components in the
system and benchmark. Therefore, the goal of refactoring
a God Component is to reduce the total number of lines
of code in the system to be in line with the rest of the
components in the system (i.e. get closer to the median of
the system). As mentioned earlier, the lines of code metric is
a known predictor of complexity [6], [38], [39], therefore to
formalise this concept we define

δ(x) = LOC(x)− Tmedian (6)

where LOC(x) calculates the lines of code of in the artefact
affected by the smell x, and Tmedian is the median size of
components in the system.

However, just the bare number of lines of code is not
fully indicative of the effort. The number of elements and
the connection among those elements is a variable affecting
the difficulty of performing such task. The more elements
(and connections among them) there are in a component,
the lower its Understandability [6, p. 32] and the higher
their coupling. Therefore, we define the extent of a god
component architectural smell as

m(x) = δ(x) ·

√
|Ex|
2|Vx|

(7)

where |Ex| ≥ 1 and |Vx| ≥ 1 are the number of edges
and vertices respectively, contained in the subgraph cre-
ated within the artefact affected by x. The second term in
Equation 7 ensures that if there is loose coupling among the
elements contained in the component affected by x, then the
overall value is lower, because it is easier to identify what
files to move to another component, or what files to split
into multiple files before moving them. The square root is
used to reduce the effect on the final result. Indeed, early
experimentation without the use of the second term resulted
in over-estimations of the index in cases were the internal
elements of a package were loosely coupled.

3.3.3 Summary definition

The m function has a different definition based on the type
of smell evaluated. To avoid misunderstandings, we for-

7

malise this in the present section by defining m as follows:

m(x) =


∑Ex w(a→b)

o(a→b) if x is a CD, HL, or UD instance

δ(x) ·
√
|Ex|
2|Vx| if x is a GC instance

(8)
where x is an architectural smell instance, and the rest of
the variables and functions are the same as defined in the
previous sections.

4 CASE STUDY DESIGN

To evaluate the approach described in Section 3, we fol-
lowed the guidelines proposed by Runeson et al. [47] to
design an holistic multiple-case study. Case studies are
commonly used in software engineering research to study
a phenomenon in its real-life context [47]. We opted to
perform a case study because it allows us to investigate the
practical application of our approach in the context of both
industrial and open source projects. In the next sections we
elaborate on the study design.

4.1 Goal and research questions
The objective of the case study is to evaluate the accuracy,
transparency, and relevance of our approach that estimates
architectural technical debt principal using architectural
smells. Using the Goal-Question-Metric [48] formulation,
the objective is stated as follows:

Analyse the approach estimating architectural technical
debt principal for the purpose of validating its ap-
plication with respect to accuracy, transparency, and
relevance of the estimation output from the point of
view of software developers in the context of open
source and industrial software systems.

The goal can be further refined into the following two
research questions, reflecting accuracy and relevance respec-
tively:

RQ1 Can the approach accurately and transparently rank
architectural smells by their severity?

RQ1.1 How accurate is the ranking of AS by different ML
models?

RQ1.2 How do smell characteristics impact the predictions
of severity?

Essentially, we are interested in the accuracy (whether the
ranking by severity is close to the ground truth) and trans-
parency (what information is used to rank an instance) of
the output of the approach, i.e. the principal. Our approach
uses two factors to estimate the principal of each smell
instance: severity and extent. We do not need to validate
the accuracy and transparency of the smell extent, as that
can be measured directly on the source code generating the
smell. Thus, RQ1.1 concerns the accuracy of calculating smell
severity, and particularly the accuracy of the machine learn-
ing model in ranking architectural smells by their severity.
We will assess the accuracy of the model using an evaluation
metric specific to ranking tasks as described in Section 4.3.2.
RQ1.2 focuses on measuring the transparency of the machine
learning model. Namely, it will explain how the model
effectively makes predictions on new, unseen instances, thus
allowing us to better understand which smell characteristics

make a smell more severe than another. This will also ensure
that the model is not using undesired variables to predict
the severity of a specific smell (e.g. the Shape characteristic
is only used for CD instances, and should be be used to
predict the severity of a HL).

RQ2 Is the principal estimated by the approach relevant to
software developers?

RQ2.1 Does the estimated principal represent the effort nec-
essary to refactor an architectural smell?

RQ2.2 Are the size and order of the estimations of individ-
ual smells meaningful in relation to each other?

RQ2.3 What do software developers think about the pro-
posed approach overall?

This research question assesses if the whole approach is
relevant, in terms of providing an actionable output to
developers (i.e. can they make decisions using the output
provided by the approach?). We answer this research ques-
tion by answering the three sub-questions. RQ2.1 focuses
on how far the estimated principal correlates with the effort
expected by the engineers to refactor a certain instance.
This would allow engineers to reliably plan the allocation
of their resources (e.g. time) during the repayment phase.
RQ2.2 focuses on whether the approach allows comparisons
between different smell instances (e.g. if this smell’s esti-
mated ATDI is x than it makes sense for the other smell’s
ATDI to be y). If indeed the magnitude and relative size of
the estimations with respect to each other are meaningful,
then the approach provides the means to make evidence-
based prioritisation decisions for resolving smells. Finally,
RQ2.3 aims at understanding the general opinion of software
developers towards architectural smell analysis and the
estimations provided by ATDI.

4.2 Overview of the case study

The two research questions (RQ1 and RQ2) correspond,
respectively, to two different phases of this study: model
engineering & verification and model validation. Figure
2 depicts a detailed overview of these two phases, while
Section 4.3 and Section 4.4 respectively describe the two
phases in detail.

The process for answering RQ1 can be summarised,
using the steps from Figure 2, as follows: step (a) concerns
itself with the analysis of several software projects using
ARCAN; the results are used in steps (b) and (c) to create
a dataset that ranks architectural smells by their severity;
this dataset will be used in steps (d) and (e) to iteratively
train and evaluate the performance of such model until its
performance is satisfactory. The output of these two steps is
then used to answer RQ1.1 and RQ1.2 respectively.

Similarly, the process for answering RQ2 can be sum-
marised as follows: the (partition of the) output of step (a)
that was not used to answer RQ1 is used in steps (f) through
(h) to calculate ATDI for each smell; then, its output is used
in step (i) to answer RQ2 through a series of interviews with
the practitioners that developed the systems containing the
smells analysed.

The upcoming Sections 4.3 and 4.4 describe the research
methodology for RQ1 and RQ2, respectively.

8

TABLE 2: The open source projects (and Arcan) used for
sampling smells and the number of smells compared as well
as the number of comparisons.

Project LOC AS de-
tected

AS sam-
pled NeighboursCompar-

isons

Arcan 30k 192 55 14 23
AStracker 10k 77 28 7 7
Emma 23k 177 54 10 15
JMeter 147k 716 154 22 77
JUnit4 31k 60 29 7 7
Spoon 155k 2859 155 22 77
Spring-boot 366k 133 92 15 35
Struts2 158k 849 84 14 30

Total - 5063 651 111 271

A replication package of this study is available online
[25] and contains all the material used to design this case
study.

4.3 RQ1: Model engineering & verification

4.3.1 Dataset creation
4.3.1.1 Sampling the smells: To answer RQ1 we

trained a machine learning model to rank architectural
smells by their severity. The first step necessary to do so, as
shown in Figure 2, step (a) was to collect the data necessary
to train the machine learning model, i.e. the architectural
smells. This entailed choosing a set of projects to mine the
smells from using ARCAN (see Section 2). The selection
criteria to choose the projects were the following:

1) The projects must have more than 10.000 LOC;
2) The projects must have at least one instance of each

architectural smell type;
3) The annotators must be familiar with the architecture

of the system they are annotating.
These criteria ensured respectively that: 1) the projects se-
lected were sufficiently big to contain enough architectural
smells; 2) for each project there can be a comparison between
all smell types; 3) the annotated smells affected parts of
code that the annotators were familiar with, thus being able
to provide a relevant annotation. The projects selected by
this process are shown in Table 2, along with the number
of smells detected in each project. Given that some archi-
tectural smell types (e.g. CD) exhibity higher occurrence
rate than others, we randomly sampled at most 140 CD for
each project and used stratified sampling to sample as many
smells as possible from each project (which was dictated by
the minimum occurring type of AS), as shown in Table 2.
This avoided having an excessively predominant number
of CD while also maintaining an organic distribution of the
smell types in our sample.

4.3.1.2 Annotation set creation: The smells sampled
from the selected projects were then used to create an an-
notation set that contained, for each record, a pair of smells
and an annotation denoting which one of them is the most
severe one. As one can see in Figure 2, step (b), annotations
were manually created using pairwise comparison, a process
for annotating entities [49] where an annotator is asked to
compare two entities w.r.t. a certain quantitative property
and provide a qualitative judgement on which one of the

two entities is best. The main reason for using pairwise
comparisons over rating scales (e.g. Likert scale) is that
it avoids several problems typical of rating scales. More
specifically, rating scales are relative, which means that a
value of 4 may not represent a similar quantity for two
different individuals. Also, the quantity represented for one
individual may change during the questionnaire (e.g. after
answering more questions) or if repeated in different days
[50], whereas, if two smells are compared twice and obtain
discordant ratings, their final ranking will just depend more
on the annotations where the two smells were compared
with other smells. These disadvantages make a rating scale,
such as a Likert scale, a poor choice for this step.

The main drawback of pairwise comparison is the very
large amount of comparisons necessary to achieve an or-
der among the elements compared. Pairwise comparisons
necessitates

(n
2

)
comparisons. If we want to create a data

set with n = 500 elements, then 124.750 comparisons are
necessary. This number is infeasible for the purposes of
our study; therefore, we adopted an array of techniques to
reduce this number while at the same time increasing the
number of elements in our data set:

1) Active Sampling is a technique that chooses the pairs to
compare based on which one gives the most amount of
information [51]. This technique is basically a compro-
mise between number of comparisons and accuracy of
the ranking with respect to the ground truth (i.e. the
order obtained by doing

(n
2

)
comparisons). The more

comparisons are performed, the lower the error accu-
mulated. Moreover, active sampling allows to reduce
this error much faster than random selection of pairs
to compare. Several state-of-the-art techniques exist to
perform this task, but ASAP [51] is the latest and fastest
at the moment of writing. With this technique, we are
guaranteed to reach at worse a 15% error within 1

3

(n
2

)
comparisons.
This technique alone, however, is not sufficient to re-
duce the number of comparisons to a feasible amount.

2) Initial ranking gives an initial estimation of the final
rank of the smell based on the architectural smells
characteristics of each instance (i.e. the number of el-
ements affected, number of dependencies, etc.). The
calculation of the initial ranking is based on previous
work on architectural smell ranking [26] and on smell
characteristics [19].
This allows to avoid comparisons of smells that are
clearly at the two ends of the ranking range (e.g. a cycle
of size 20 and a cycle of size 3).

3) Neighbourhood Representative Sampling (NRS) is based on
the core concept behind the k-nearest neighbours (k-
NN) algorithm, a classification and regression model
widely used in machine learning [52]: similar instances
will probably have a similar classification. This rationale
can also be applied to the initial ranking, namely, similar
instances will have a similar initial ranking. Therefore, if
we choose k as the number of neighbourhoods and
‘appoint’ one representative for each neighbourhood,
we only have to compare k elements rather than n.
Obviously, the smaller the value of k, the more precise
the final ranking. We selected k with the following

9

Projects

Arcan Arch.
Smells

Pairwise

comparison

Annotators

Annotation
Set

Annotators pick the most severe
between two smell instances

Assign to each instance

a ranking score (TrueSkill)

Ranked AS
instances

(Data set)

Train ML model to learn
rankings

The model is trained using
AS characteristics to predict

the severity of a smell.

Smell ranking model

Training
set

smells

Smell
severity

Calculate ATDI

ATDI for
each smell

Interviews to check the
relevance of the output

Open Source and Industrial Engineers

Validation
results

Validation smells

(industrial + open

source)

Calculate

extent

Smell

extent

Calculate smell
severity

RQ2:
Model
validation

RQ1: Model
Engineering

&
Verification

Hyperparameter

configuration

Evaluate ranking
performances

(b)

(c)

(d)

(e)

(f)

(h)

(g)

(i)

Sample
Architectural Smells

(a)

Fig. 2: Detailed diagram of the model engineering and model evaluation phases.

formula k = blog2 nc for all n ≥ 5, otherwise we
used k = 1 (i.e. compared all smells). The number of
representatives is reported in the third column of Table
2.

4) Intra-project comparisons entails comparing smells from
the same project only. This is justified because during
the analysis of a project, the ML model will rank smells
from that project only.

These four techniques are combined as follows: we first
assign an initial ranking to each smell; then, we choose k
neighbourhoods and pick a smell that has the most similar
initial ranking in that neighbourhood and designate it as
its representative; next, we perform pairwise comparisons
among the representatives using active sampling until we
obtain an order among the representatives; finally, the rank-
ing is extended to the other smells in the neighbourhood.
This whole process is contained in Figure 2 under the step
(b), for the sake of simplicity.

The next question is how to go from triplets in the
form of 〈smell1, smell2, annotation〉 (i.e. the output of the

comparison process in step (b)) to a ranked order among
the elements compared – which brings us to step (c). There
exist several algorithms that perform this task, but we opted
for one of the most common solutions both in industry and
academia, namely TrueSkill [53]. TrueSkill has been used ex-
tensively in information retrieval, learning-to-rank models,
and even in software engineering to decide on how to assign
tasks to components in simulation systems [54], or to study
the biases present in case studies analysing the language
adoption of software developers [55]. The TrueSkill algo-
rithm seems the most pertinent for our purposes given its
application in other software engineering research studies,
as well as the wide availability of its implementation.

4.3.1.3 Data set creation and annotators agreement:
After completing step (c) from Figure 2, we obtained a
data set of 651 smell instances (see Table 2) that were
ranked according to their severity, requiring 271 compar-
isons. Comparisons required around 5 minutes each, and
the whole process took 22 hours split among 3 annotators.
The annotation team was comprised of two Ph.D. students

10

1 2 3 4 5 6 7 8 9 10
Severity

Smell Type CD UD HL GC

Fig. 3: Distribution of (severity) labels obtained through our
annotation process. Original data points are showed with
slight jitter for better visualisation. Severity was rounded to
0 decimals in order to comply with LightGBM requirements.

(including the first author) and a research assistant. Inter-
annotator agreement was measured using Fleiss’s Kappa
[56], obtaining a .88 score (considered ‘almost perfect agree-
ment’ [56]). Three test run rounds were necessary to achieve
a score greater than .8 (i.e. greater than ‘moderate agree-
ment’ [56]), with the first two rounds scoring .29 and .43.
We ensured all three annotators used the same decision-
making process to annotate the data by devising a set of
rules, available in the replication package [25] along with
the resulting annotations. Those rules were based on the
available literature [26], [27], our own experience on the
subject, and the discussion among the annotators after each
of the three test rounds.

The distribution of the labels obtained through this
process is depicted in Figure 3. As it can be noted, CD
smells are distributed almost perfectly across the domain
of severity, whereas the other smells are skewed towards
higher values. This is because CD smells are much more
easily detectable and there exist many more instances that
pose little threat to the maintainability/evolvability of a
system [26], [27]. This is, in contrast, rather unlikely for a GC
or HL instance. The distribution of the number of different
types of smells is representative of the typical distribution
found when analysing other software systems [57].

The training of the machine learning model was done
using a 7-fold cross validation (step (d)) and we eval-
uated ranking performance using normalised discounted
cumulative gain (step (e)). This step (step (e)) allows us to
measure the accuracy of the ML model, i.e. to answer RQ1.
Further details on the training and performance obtained
are reported in the next section.

4.3.2 Training strategy & evaluation metric

To select the most suitable model for our task, we relied on
the current state-of-the-art library for LTR tasks: LightGBM
[58]. The training process used is k-fold cross-validation
[59], a process where the data set is divided into k equal
partitions with one partition that acts as test set and the rest
as training set; the process is then repeated until all k par-
titions acted as test set. The main advantage of using cross-
validation over classic approaches such as plain train/test
partitioning is the reduction of selection bias, ensuring that

the model performs similarly regardless of the seed used to
partition the data set.

The metric that is most suitable to evaluate the perfor-
mance of our model is Normalised Discounted Cumulative
Gain (NDCG) [13]. NDCG is the most common metric
used in information retrieval to evaluate the efficiency of
an algorithm to retrieve results in a certain order [60]. As
an example of its use in software engineering studies, it
was used to evaluate the relevance of algorithms retrieving
architectural knowledge from StackOverflow [61].

The goal of our task is to minimise the number of times
a severe smell is ranked below a less severe smell. NDCG
matches perfectly our goal, as it penalises smells appearing
lower than less severe smells in a ranked result list.

The formula of NDCG is as follows

NDCG =
DCG

IDCG
=

1

IDCG

n∑
i=1

`i
log2(i+ 1)

where `i is the severity label of the smell at position i, DCG
is the discounted cumulative gain, and IDCG is the DCG
calculated on the sequence of retrieved elements in the ideal
order (i.e. we sort results by `i such that smells with higher
values of `i appear first).

The NDCG metric (unlike DCG) is defined in the
interval [0, 1], with higher values meaning better perfor-
mance/ranking of results. In most scenarios, NDCG is
calculated only for the first n elements of the test set,
denoted as NDCG@n. By combining multiple measures
of NDCG@n for different values of n, one can gauge the
performance on incremental sub-lists of the result. In other
words, n restricts the focus on the performance obtained by
classifying the top n most severe smells in the test set.

4.4 RQ2: Model validation
Figure 2 depicts the process used for the validation of the
model (red frame). In particular, we detect architectural
smells in open source and industrial systems, use the ma-
chine learning model developed in RQ1, calculate ATDI
through calculating extent and severity, and then collect
the opinions of software practitioners about the output.
The opinions are solicited through interviews, which, as
a direct data collection technique, allows researchers to
control exactly what data is collected, how it is collected,
and in what form it is collected [47], [62].

4.4.1 Cases, subjects and units of analysis
The cases of our study are the projects analysed whereas the
context is either open source or industry; Figure 4 illustrates
as an example, two cases from each context, from a total of
sixteen cases. Finally, the units of analysis correspond to the
software practitioners interviewed. Since each case contains
a single unit of analysis, the design of the case study is
multiple and holistic (see Runeson et al. [47]).

Tables 3 and 4 list the participants of the interviews,
alongside their respective background information; the sam-
ple contains 9 engineers from open source projects and 7
from industrial projects. We opted to interview one engineer
per project (both for Open Source and industrial projects) in
order to maximise the variance of information obtained and
avoid overlaps, thus extending external validity. Note that

11

Context 1 (Open Source) Context 2 (Industry)

Case 3 (Project 3)
Unit of Analysis 3

(Engineer)

Case 4 (Project 4)

Unit of Analysis 4

(Engineer)

Case 1 (Project 1)
Unit of Analysis 1

(Engineer)

Case 2 (Project 2)

Unit of Analysis 2

(Engineer)

Fig. 4: Mapping of cases and units of analysis for RQ2; based
on Figure 3.1 by Runeson et al. [47].

most of the participants from open source projects are also
employed in industry.

The open source participants were selected through the
following process:

1) We first collected a list of open source projects featured
in other recent studies on Technical Debt that involved
interviews and/or surveys [63], [64], [65]. This ensured
that the candidate projects contained technical debt and
resulted in selecting 21 open source projects (listed in
Figure 6);

2) We listed the most active contributors from the reposi-
tories of such projects (top 10% of number of commits in
the last year). We selected the most active contributors
to ensure that they had deep understanding of the
system (or of a specific part of it) and that they were
up-to-date with the latest code. This resulted in over 260
contacts, and after removing bots and invalid emails we
ended up with 230 contacts;

3) We sent out 230 invitation emails and received 37
responses, of which 11 of them contained a positive
response and eventually 9 resulted in an interview.

To select the industrial participants, we used purposeful
sampling [66]. Specifically, we got in touch with two compa-
nies from our professional network and asked them whether
they were willing to participate in the study. The two
companies are both small and medium-sized enterprises4

that operate in the IoT and Enterprise Application domains,
respectively. Next, we asked them to provide us with (1) a
list of Java projects that had at least 10.000 lines of code, and
(2) a list of engineers working on these projects that were
willing to take part in the interviews.

Overall, the sample is comprised of 16 engineers (and
their respective projects), characterised by a wide variety
in total number of years of experience and technological
background (e.g. distributed systems, testing, security, etc.).
Of course, no sample is perfect, and we elaborate on the
threats to external validity entailed by the composition of
our sample in Section 9.

4.4.2 Data collection
Interviews were held following the guidelines mentioned by
Runeson et al. [47]. Overall, the data collected for each par-
ticipant are the following: (1) background information re-
garding their expertise; (2) whether they find the estimated
principal to be representative of the required refactoring

4. See https://ec.europa.eu/growth/smes/sme-definition en.

TABLE 3: List of participants from the open source projects.
Note that the ‘Role in project’ column was shuffled to pro-
tect the anonymity of the participants. For example, P1 is not
an idependent contractor, but one of the other participants
is. Abbreviations: Partic.: participant; OS: open source; IN:
industry; Exp.: experience; PMC: Project Management Com-
mittee; MC: Main Contributor.

Partic. Project Exp. in OS/IN
(Years) Role in project

P1 Hadoop 12 / 8 Independent Contractor
Team lead and MC
PMC member & Contributor
Security Engineer
PMC member
PMC member & contributor
Lead maintainer
Contributor
Project lead and MC

P2 DBeaver 5 / 18
P3 JUnit5 12 / 14
P4 RxJava 10 / 15
P5 Jenkins 18 / 11
P6 Hibernate 20 / 20
P7 Cassandra 8 / 24
P8 Camel 18 / 20
P9 HBase 16 / 20

Average 13.1 / 16.6

TABLE 4: List of participants from the industrial projects.
Abbreviations: mgmnt.: management; Partic.: participant;
Exp.: experience.

Partic. Company Project Exp.
(Years) Role

P10 C1 IoT Framework 3 Developer

P11 C1 Document
mgmnt. system 15 Senior developer

P12 C2 Project mgmnt.
tool 22 Product manager

P13 C2 Rent mgmnt.
API service 8 Senior developer

P14 C2
Parking
occupancy
meter

6 Full-Stack developer

P15 C2 Financial assets
mgmnt. 6 Senior developer

P16 C2 Subscription
mgmnt. 3 Developer

Average 9

effort (RQ2.1); (3) whether they think the order and propor-
tions of the principal estimations were consistent among the
instances presented (RQ2.2); (4) the rationale behind their
answers on points (2) and (3); and (5) their feedback on the
whole analysis (RQ2.3).

The interviews lasted 30-35 minutes and were semi-
structured in their format, meaning that the interviewer
could deviate from the original list of questions if a certain
answer given by the participant was interesting to explore in
more depth. The replication package contains the interview
invitation and the questionnaire with the list of questions
[25]. Each interview invitation contained (1) a one-pager
with the definitions of the smell types discussed in the
interviews; and (2) a letter informing the participant of the
confidentiality of the interview as well as their right to not
answer any question they do not wish to answer [47]. Before
the interview started, both aforementioned points were reit-
erated to the participants to ensure that they were familiar
with the technical concepts discussed during the interview
and that they agreed with the terms of the interview.

During the interviews, we showed the participants one

https://ec.europa.eu/growth/smes/sme-definition_en

12

instance of each architectural smell type. If one type was
not detected in the particular system, we replaced it with
an instance of a type already included, so as to ensure we
collect the same amount of data from every engineer. Smells
were chosen from parts of the system that the participants
indicated to be most familiar with. The smells were visu-
alised graphically as a network where nodes corresponded
to classes and packages, and edges corresponded to the
dependencies among them. Each smell was accompanied by
a number representing the effort necessary to refactor that
smell (i.e. the ATDI) and each participant was instructed
that ATDI was an estimation of the effort to refactor. Next,
each participant was asked whether they agree with the
information presented for each instance while also keeping
in mind the estimations provided for the other instances.
This ensured that their answers were consistent among
different smell instances. Finally, each participant was asked
to explain their answer and particularly their rationale. This
process allowed us to minimise the amount of explanation
provided to the participants (reducing the risk of confusion
and bias).

4.4.3 Data analysis
To analyse the data collected through the interviews, we
adopted the Constant Comparative Method (CCM) [67],
[68], which is part of Grounded Theory [69]. Grounded
Theory (GT) is one of the most important methods in the
field of qualitative data analysis. It has been used exten-
sively within both social sciences and software engineering
and provides a structured approach to process and analyse
the data collected from multiple sources. GT increases the
theoretical sensitivity of the researcher as the data analysis
progresses and eventually allows to formulate hypotheses
and theory [69].

The CCM is an inductive data coding and categorisation
process that allows a unit of data (e.g., interview transcript,
observation, document) to be analysed and broken into
codes based on emerging themes and concepts; these are
then organised into categories that reflect an analytic under-
standing of the coded entities [70].

The qualitative data analysis requires interviews to be
transcribed before any of the techniques mentioned above
could be applied. Transcriptions were done as soon as
batches of 2-3 interviews were completed, whereas data
analysis was done iteratively. Each iteration of the data
analysis process is presented in Figure 5 and is comprised of
3 phases. During the first phase (Phase A), the collected ma-
terial (i.e. the initial interview transcripts) was studied and a
code map was created to organise the codes used to tag the
data. After completing this phase, the coding process started
(Phase B), which also involved updating and re-organising
the codes based on the new understanding of the data.
Gradually, more interviews were recorded, transcribed, and
coded and notes were taken with the aid of the coded data
(Phase C). In total, three iterations of data analysis were
done (i.e. three times the whole process from Figure 5):
the first for the interviews with open source engineers, the
second with the industrial engineers, and the third to ensure
that the codes added along the way were present in all the
data. The whole process was performed by the first author
of the paper, while the second author reviewed the codes

Phase CPhase BPhase A

Study the material

Define codes

Read and code the
material

Reformulate, split and
categorize codes

Code analysis

Take notes of findings

Fig. 5: The qualitative data analysis process.

and coding schemes as they were developed to reduce the
risk of biases (e.g. confirmation and information bias). To
automate the data analysis as much as possible, we relied
on Atlas.ti5, a dedicated qualitative data analysis tool.

5 DESCRIPTIVE STATISTICS OF ATDI
Before presenting the results of the two research questions,
we briefly present some descriptive statistics about ATDI
and derive some observations. These should provide more
context on the results of both RQ1 and RQ2 and allow us to
understand the statistical nature of the estimations provided
by the approach. Additionally, we also briefly compare the
values we obtain by using the architectural smells detected
by a tool different than ARCAN.

These statistics concern the same 21 projects from which
we collected the names of the open source participants for
RQ2 as well as the 7 industrial projects; in total, ATDI was
calculated for more than 41.000 smell instances of these
28 projects. Figure 6 shows both the values of ATDI for
each architectural smell instance and the value of ATDI
density for the 28 projects considered. The left-hand side
plot depicts the total ATDI density for all projects, ordered
from the most ATDI-dense project to the least. The right-
hand side plot depicts the distribution of ATDI for each AS
instance in the 28 projects. From the statistical analysis of
the data depicted in Figure 6, we note the following:

1) the highest density project is ElasticSearch with 3345.8
ATDI for each KLOC, despite being the second largest
system analysed;

2) the lowest density project is JUnit5, with 16.2 ATDI for
each KLOC;

3) an overall lower ATDI density in a project does not
always imply smells with lower individual ATDI. In
particular, projects with lower ATDI density than Antlr4
(i.e. below it in Figure 6), show a large variance in the
ATDI of the individual instances;

4) 50% of AS instances have ATDI ≤ 161, and 33% of
instances have ATDI ≤ 100;

5) there are only 37 smells with an ATDI ≥ 750 (less than
0.001% of all smells analysed);

6) the maximum ATDI is 8505 by a HL smell in Jenkins;
7) the minimum ATDI is 11, by three CDs with low

severity in Camel, Cassandra and Dubbo respectively;
Figure 7 depicts the distribution of ATDI for different

types of AS. There is a clear difference between the four

5. See https://atlasti.com/.

https://atlasti.com/

13

● ●●●All

C1_iot
junit5

C2_par
camel
C2_fin
retrofit

C2_sub
MPAndroidChart

guava
C2_ren

libgdx
C2_pro

gson
C1_doc
fastjson

flink
RxJava

gerrit
redisson

mybatis−3
dbeaver
hadoop

dubbo
antlr4

jenkins
cassandra

hibernate−orm
elasticsearch

0 1000 2000 3000

Principal density (ATDIdensity(P)) per KLOC

Legend

KLOC

Density

0 200 400 600

Principal of AS instances (ATDI(xi))

Fig. 6: On the left, the total amount of principal (ATDI) per 1.000 lines of code (KLOC) for each project (calculated using
Equation 2) compared with the number of KLOC. On the right, boxplots depicting the distribution of the principal (ATDI)
calculated for each AS instance (outliers not visualised).

UD

CD

GC

HL

0 400 800 1200

Principal of AS instances by type (ATDI(xi))

Smell Types CD GC HL UD

Fig. 7: Boxplots showing the distribution of ATDI for differ-
ent types of AS (outliers not visualised).

types of AS. GC instances are the ones with the highest ATDI
principal on average, followed by HL, CD and lastly UD.

Finally, we briefly look at how different detection tools
may impact the amount of TD calculated by ATDI. To do so,
we analysed 10 of the systems from Figure 6 with Designite
[71], and used the smells detected as input to ATDI. The
results show that using different tools result in different
values of ATDI for the same systems, namely the two tools
result in two different distributions of ATDI (according with

Wilcoxon signed ranks test). Despite this difference, the two
samples (ATDI calculated with Designite and ATDI calcu-
lated with ARCAN) are strongly correlated with a Spearman
correlation coefficient ρ = 0.79. This means using different
tools to calculate ATDI is unlikely to significantly affect the
conclusions obtained. Further details on the methodology
and results of this analysis are available in the replication
package [25].

6 RQ1 RESULTS

6.1 RQ1.1: ML model accuracy

Table 5 summarises the NDCG@n values obtained through
cross-validation on our data set by different models. We
recall from Section 4.3.2 that NDCG@n provides higher
values when the model consistently ranks severe instances
above less severe ones. Note that we opted for 7-fold cross-
validation6 over the typical 10-fold because in our case it
increases the size of the test set significantly (from 65 to
93) while it also reduces overfitting (i.e. we obtain much
lower variance with k = 7). The results show that the best-
performing algorithm is ‘rank xendcg’, i.e. Cross-Entropy
NDCG Loss for learning-to-rank [72], one of the most recent
and best-performing LTR algorithms. We refer the reader to

6. Folds are sampled using stratified sampling on severity, which is a
typical practice in Machine Learning.

14

the official documentation of LightGBM for details on the
other algorithms7.

Overall, ‘rank xendcg’ performs very well for all values
of n. However, the most severe smell is not always the
very first smell in the list, but it does appear very close
to the top in several occasions given the score obtained for
NDCG@1 = .99. For values of n > 1, ‘rank xendcg’ settles
around .90, meaning that most instances are ranked close to
their true rank, but not all of them. When considering the
order obtained on the full size of the training sets (n = 93),
the performance reaches .97. This means that the most-
severe instance is almost perfectly ranked, the mid-severity
instances are appropriately ranked but not quite perfect, while
the low-severity instances are almost perfectly ranked.

To make these results clearer, we give four examples of
smells from our data set in Figure 8; their actual severity
is obtained through the process described in Section 4.3,
while the predicted one by the ML model. Figure 8a depicts
a CD smell with very low severity that affects one class
and two of its internal classes. Typically, this type of cycle
is intentional, and given that the three classes are always
expected to be reused together, this cycle does not pose
any threat to maintainability, so it was labelled with the
minimum severity of 1. The value predicted by the model
was 1.84, which is almost double the actual value, but it is
still rather close.

Figure 8b shows a rather severe HL instance affecting
the main gui package in the system8 and involving 31
other packages. Given that gui is aggregating a lot of
functionality (when in theory it should only be responsible
for the user interface) it was annotated with a severity of 10.
The model’s prediction was a bit lower at 9.11.

Figures 8c and 8d depict two smells of medium severity,
both are CD smells affecting 4 and 3 packages, respectively.
Both smells were labelled as medium severity of 5, because
they affect packages of the system, are tightly coupled,
but are not too big in number of elements affected. The
predictions provided by our model for both smells were
relatively close to the actual values.

To summarise, the goal of RQ1 was to check whether
a ML model can accurately rank AS by their severity. This
is indeed the case and we were able to achieve a score of
0.97 for NDCG@93, which is considered a very high score.
However, there is one caveat. When considering the accu-
racy of estimating severity for single instances (rather than
the overall rank) the model is less accurate, as shown by the
examples in Figure 8. Namely, the model is clearly able to
predict the ranking of the smells correctly, but the accuracy
of the prediction is not perfect (Figure 8a). Nevertheless, this
is both expected and acceptable, as the goal for RQ1, was
to optimise for the global ranking of instances rather than
the individual prediction. Indeed, this is also what the ML
model is optimising for.

6.2 RQ1.2: The contribution of smell characteristics to
predictions
Our model is able to predict quite accurately the severity of
an architectural smell instance; however, it is also important

7. Visit https://lightgbm.readthedocs.io/en/latest/Parameters.
html#objective.

8. Note that there are several packages called gui in JMeter.

(a) CD smell; Predicted: 1.84; Actual: 1.

(b) HL smell; Predicted: 9.11; Actual: 10.

(c) CD smell; Predicted: 5.28; Actual: 5.

(d) CD smell; Predicted: 5.46; Actual: 5.

Fig. 8: Example of architectural smells from our data set
with their predicted and actual severity. Smells are all from
the JMeter project. The width of the edges reflects the
weight of the dependency, while the colour of nodes reflects
the number of weighted incident edges (red means higher
values; blue lower).

https://lightgbm.readthedocs.io/en/latest/Parameters.html#objective
https://lightgbm.readthedocs.io/en/latest/Parameters.html#objective

15

TABLE 5: Performance of different algorithms for different
values of NDCG@n using 7-fold cross-validation and the
standard deviation over the folds. Bold values represent the
maximum in the row.

NDCG
@n

Algorithms

mse multiclass multiova rank
xendcg

lambda-
rank

1 .91±.00 .77±.04 .94±.01 .99±.00 .99±.00
10 .87±.00 .86±.01 .88±.01 .90±.00 .82±.00
25 .89±.00 .87±.00 .87±.00 .90±.00 .87±.00
50 .93±.00 .91±.00 .92±.00 .92±.00 .90±.00
93* .96±.00 .95±.00 .96±.00 .97±.00 .95±.00

* size of the test sets for k = 7

to understand what smell characteristics are used, and how
they impact the prediction. Namely, we want to improve the
transparency of the model by studying how it performs the
predictions. To do so, we used an approach called SHAP
(SHapley Additive exPlanations). SHAP uses game theory
to link the input of a model (i.e. the smell characteristics) to
its output (i.e. the severity) [14] and explore the correlation
visually.

Figure 9 depicts the importance of the smell characteris-
tics (or features) according to the SHAP method. Values on
the x-axis represent the output of the SHAP method: pos-
itive values entail that a feature contributed positively (i.e.
increased severity) to the output of the model whereas neg-
ative values provided a negative contribution (i.e. decreased
severity). We expect the model to match the assumptions in
the literature in order to establish that it works as intended.

The Size feature (i.e. number of affected elements) con-
tributes the most to the severity of the smell, with higher
values of Size increasing the severity and small values
being neutral. The PageRank of the affected elements comes
second, with higher values positively contributing to the
severity of a smell. This means that elements that are more
central in the dependency network of the system make
a smell more severe. The Number of edges feature has a
similar impact as Size (they are indeed correlated [19]),
but low values decrease the severity of a smell, instead of
being neutral. The metrics based on the Package Containment
Tree (PCT) [26], [27] were relatively important too. High
values of St.dev. PCT Depth, namely, when a smell affects
both elements at the top and bottom of the PCT, positively
contributes to increase the predicted severity. Similar with
the St.dev. PCT Distance, namely, when a smell affects ele-
ments from distant branches of the PCT. In both cases, it is
interesting to note that the mean of both Distance and Depth
are less important than their standard deviation.

After considering these results, we can confirm that the
way the model uses the features reflects what is expressed
in the literature. More specifically, the smell gets more
severe in cases when its size increases [6], its centrality in
the dependency network of the system is higher [12]; also,
under the assumption that distant elements in the PCT are
more likely to implement different concerns [26], the smell
affects elements that are unrelated.

SHAP is also able to explain the output of single in-
stances. Figure 10 depicts the force plots on how smell
characteristics (i.e. features) contributed to the predictions
shown in Figure 8. For the low-severity smell, Figure 10a

0.5 0.0 0.5 1.0 1.5 2.0

SHAP value (impact on model output)

Shape
Instability Gap
Affected Type

Mean PCT Depth
Mean PCT Distance

St.dev. PCT Distance
St.dev. PCT Depth
Number of Edges

PageRank
Size

Low

High

F
e
a
tu

re
 v

a
lu

e

Fig. 9: Importance as calculated by the SHAP method [14].
The higher on the y-axis the higher the importance. Positive
values on the x-axis mean that the feature contributes to
increase the severity of a smell, whereas negative values do
the opposite. Colour is mapped to the value assumed by the
feature.

shows that all features contributed to reduce the predicted
severity of the instance. The Number of edges and PageRank
features were the two main drivers for the decision. An
almost opposite situation can be observed in Figure 10b for
the smell with the highest severity, but in this case the high
number of connections (i.e. Number of edges) and the fact that
smell involves several elements from different parts of the
system (i.e. high Std. dev. PCT Depth) were the two main
drivers behind the prediction of the model. Concerning the
two smells with similar severity, we can notice in Figures
10c and 10d that the PCT characteristics push for a higher
severity, but the size-based characteristics push for a lower
severity. These two opposite forces result in a decision that
settles towards the middle of the output scale.

In summary, by showing what AS characteristics are
used by our model (and how) allows us to better understand
what constitutes a severe smell and what does not. More
importantly, it increases the reliability of our study as we
do not treat the ML model as a black box. Instead, we
provide data to explain why it works well and that the
identified reasons are in line with what we expected from
the literature.

7 RQ2 RESULTS

In this section we report on the results obtained by analysing
the data collected through our interviews. Note that this
section concerns the estimations of the index (as defined by
Equation 3), which are calculated using severity (i.e. RQ1
model) but also the extent of the smell. In the upcoming
sections, we first report the opinion of the engineers on
the estimations of architectural debt principal (or ATDI ,
the effort to refactor) to answer RQ2.1 and RQ2.2. Then,
we report the general feedback we received from the en-
gineers concerning our approach to answer RQ2.3. Finally,
we conclude by reporting on a few drawbacks and possible
improvements of our approach.

7.1 Perception of the ATDI estimations (RQ2.1 & RQ2.2)
7.1.1 Overview
Overall, the feedback provided by the participants regard-
ing how well the estimated principal represents the refac-
toring effort (RQ2.1), was rather positive. Of the 62 total

16

0 1 2 3 4 5 6

Number of Edges = -0.52 PageRank = -0.43 Shape = 1.06 StD PCT Depth = -0.68

higher lower

base value

1.85

severity(x)

(a) Output explanation of Figure 8a.

2 3 4 5 6 7 8 9

N. of Edges = 2.95StD PCT Depth = 1.47Size=1.95PageRank = -0.1Mean PCT Distan.=1.32StD PCT Distance=0.53Affected Type = 1.06Shape = -1.29

higher lower

base value

9.13

severity(x)

(b) Output explanation of Figure 8b.

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5

Shape = 2.23 N. of Edges = -0.52 Size = -0.53Mean PCT Distance = 1.32Affected Type = 1.06StD PCT Distance = 0.71Mean PCT Depth = 1.13

higher lower

base value5.28

severity(x)

(c) Output explanation of Figure 8c.

4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75 6.00 6.25

Size = -0.62 N. of Edges = -0.53Mean PCT Distance = 0.69Affected Type = 1.06PageRank = -0.11StD PCT Depth = 0.52Shape=-0.12

higher lower

base value
5.47

severity(x)

(d) Output explanation of Figure 8d.

Fig. 10: Prediction explanation of how severity was calculated for smells in Figure 8. The x axis represents the severity (i.e.
output of the model), the blue bars represent a reduction of severity (i.e. negative contribution to prediction). Red bars
represent an increase in severity (i.e. positive contribution to prediction). Each segment belongs to a specific feature only.
The size of the contribution corresponds to the length of each segment and can be read on the x-axis. The value shown
next to each feature is the normalised value the feature assumes for the smell instance (i.e. it is not the contribution). The
number in bold shown above the x-axis is the predicted severity for the instance.

smell instances that we discussed and their respective ATDI
estimations9, shown to the participants, 71% (44/62) of the
estimations were described as representative of the effort
necessary to refactor. More specifically, responses on indus-
trial instances showed 81% agreement rate with the estima-
tions provided by the index, whereas for smell instances
detected in open source projects the agreement rate with the
index was 65%. Of the 29% (18/62) of total instances that
were off the mark, only 10 of them were off by more than
100. The other 8 instances were off by less than 100, but
since 6 of these were small instances, with an ATDI ≤ 100,
the relative error was higher, so they were perceived by the

9. Note that for a few participants we did not have time to discuss all
4 instances.

participants as a big over-, or under-estimation. Note that
from our descriptive analysis of ATDI (see Figure 6), we
know that only 33% of instances have an ATDI ≤ 100, so
the extent of the imprecision is limited to a small percentage
of these 33% of instances.

Concerning the magnitude and relative size of the esti-
mations (RQ2.2), we established through coding and a typ-
ical Likert-scale that 62% (10/17) of the participants totally
agreed with the relative size and order of the estimations,
while 26% (4/17) of the participants disagreed with the rank-
ing of a single instance only, and the remaining 12% (2/17)
with more than one. Participants interviewed on industrial
projects had a much higher rate of agreement with the
ranking and relative size of the estimations than open source

17

participants. 85% (6/7) of industrial participants completely
agreed with the ranking and relative size, whereas only 44%
(4/9) of the open source participants did so. The rest of
the open source participants (5/9) made either one or two
corrections to the order. Note that these were mostly made
on instances with an ATDI < 100.

The true and false positive rates of the smells presented
to our practitioners are the following: 75% (47/62) of the AS
instances were considered true positives by our practition-
ers, and the remaining 25% were considered false positives
(not seen as a real problem).

The aforementioned numbers provide a quantitative
overview of the perception of the participants regarding
the validation of ATDI. In the next sub-section, we will
give examples of six different cases, in order to provide
a richer, qualitative description of both the smells and the
participants perception. The examples were chosen to best
represent the various aspects of our data set such as: (1)
the ratio of agreement/disagreement with estimations; (2)
whether the project is open source or industrial; (3) whether
it concerned large or small smell instances; and finally, (4)
whether the cases simply presented more insights.

7.1.2 Example opinions of the participants

7.1.2.1 Example 1: RxJava: This first example de-
scribes how two architectural smells of two different
types, GC and HL, are estimated and compared by par-
ticipant P4. The GC smell was detected on the pack-
age io.reactivex.rxjava3.core, directly containing
52.000 lines of code spread across 44 classes – much higher
than the average of 10.000 lines of code circa detected in the
other packages of the system. P4 mentioned that the core
package provides access to all the functionality of RxJava
through 5 core classes, described as “god classes”. For this
reason, P4 was exceedingly confident that the estimated
value of 1500 for ATDI was justified and representative.

The HL smell was detected on one of the 5 god classes,
io.reactivex.rxjava3. core.Flowable, that is part
of the GC smell. This class has an overwhelming number
of ingoing and outgoing dependencies, namely 264; in other
words, there are 264 other classes that either depend on, or
are depended by Flowable. P4 mentioned that this did not
cause any significant technical issue as Flowable does not
contain any logic, but it did raise many concerns among the
users of RxJava as they lamented the presence of too many
methods in this class (as well as in the other 4 god classes).
For these reasons, P4 stated, with great confidence, that the
estimated value of 385 for ATDI was correctly representing
the effort necessary to refactor, and added that it made sense
for it to be close to a fifth of the amount estimated for the
GC smell as the other four classes shared the same issues
and together constitute GC smell itself.

P4: “[...] this package [the god component] contains,
among others, 5 huge classes, which you could consider
5 god classes. So it makes sense to have such a big value
for the index. There are no real technical issues with it,
but users do complain about having too many methods
on these god classes.”

It is worth mentioning that P4 admitted that every time
a new feature was added to the system, these 5 classes were

bound to change significantly, as they had to be adapted to
the new functionality, as well as updated with the latest Java
documentation.

7.1.2.2 Example 2: Occupancy of parking facilities:
This example features a project provided by C2 that mon-
itors occupancy in parking facilities. The smells discussed
for this system were two HL, one affecting a class and the
other a package.

The HL at the package level was detected on the ser-
vice package, the core package of the system containing
all the services10 provided by the system. The package had
a total of 23 ingoing and outgoing dependencies, mean-
ing that it was connected to the majority of the packages
in the system. The estimated ATDI for this smell was
600. The service package also contained an HL at class
level, namely the UserService class, with 38 ingoing and
outgoing dependencies. This HL smell had an estimated
ATDI of 150. P14 confirmed that estimations for both
smells were reasonable as the service package contained
the core business functionality of the system (with classes
such as UserService), thus making it both very risky (i.e.
changes may propagate easily) and very hard to change
(i.e. the package is complex because of the business logic).
Moreover, P14 mentioned that UserService was clearly
contributing to the service package being an HL as it
depended on classes outside service itself, but there were
also several other classes contributing to the unbalanced
number of dependencies that make service itself a HL.

P14: “Considering that every single business logic is
in there [the service package], yes, I believe that
it [the index] is proportionally correct. Especially with
respect to the UserService class. The business logic
of our services is the most difficult to change, whereas
UserService class is relatively easier to change”.

7.1.2.3 Example 3: Document management system:
This example features a project provided by C1 affected by
several smells. Among the four smells discussed with P11,
the CD is the most interesting to look at due to the counter-
intuitive nature of the smell and the estimated ATDI value.

The CD is depicted in Figure 11 (anonymised to respect
the intellectual property of C1) and it affects 8 classes
scattered across 6 different packages. The classes involved
are part of the Model-View-Controller architectural pattern
and their purpose is to retrieve data from the database and
display it to the user in a view. Despite these classes being
rather intertwined, our model estimated an ATDI = 65,
a rather low value for eight classes that are so much in-
terconnected. Participant P11 agreed with the estimations,
justifying them as follows:

“The [estimated value] seems pretty good. [...] There are
some dependencies that we cannot remove, and I can’t
see any dependencies that shouldn’t be there. So all the
dependencies are desired.”.

7.1.2.4 Example 4: Jenkins: The fourth example fea-
tures smells detected in the Jenkins project. Jenkins is a
well-known build automation system that has a rather long
and convoluted development history. This resulted in many
architectural smells forming in the system over time, two

10. Services are implemented through the Spring Framework.

18

Fig. 11: A cycle among 8 classes detected in one of C1’s
system.

of which are discussed in this example, including the smell
with the highest value of ATDI we measured in this study.
The two smells that are of interest are a HL and a GC,
which both affect the same package, the hudson.model;
this is a huge package that directly contains 43.000 lines
of code distributed across 172 classes with a total of 103
ingoing and outgoing dependencies towards other packages
in the system. The package was described as rather complex
to evolve and change due to its internal logic and the amount
of lines of code. This example is rather interesting to discuss
as the two values of ATDI are quite different from each
other despite the two smells affecting the same package.
The estimated index for the HL smell was 8500, whereas for
the GC it was 1500.

Nonetheless, P5 agreed with great confidence on both
estimations and acknowledged that they were both rep-
resentative of the effort required to refactor each smell.
P5 provided two reasons on why the refactoring of the
HL smell (i.e. reorganise the dependencies to reduce their
number) was so difficult. First, several other parts of the
system would have to change in order to remove the smell;
and second, complex refactoring techniques would be required
to do so, mentioning inversion of control and the definition
of new APIs as examples. Both of these do not necessarily
hold true – at least not to the same extent – for the GC
smell: its refactoring would require less invasive operations
such as splitting the package into multiple sub-packages.
P5’s comment on the matter was that refactoring GC should
be easier because its refactoring is more “self-contained”,
that is changing it would impact fewer classes outside the
affected package itself.

P5: “When I think about some of the main things it’s
[the model package] referring to, most of these things
have to do with the build queue logic. And that’s the
sort of thing that I remember suggesting extracting into
a library [...] to untangle the mess within. The idea
was that anyone who is much more familiar with the
algorithms behind [the job scheduler] and would want
to contribute improvements to, would be very unlikely
to be able to do so in its current state because of it being
a God component. So I definitely agree with the number
and agree that it should be a lot lower than the hublike
one, particularly because it’s more self-contained.”

7.1.2.5 Example 5: Financial assets management: The
participants did not always agree with the estimations of
ATDI. One such example, is P15, from company C2, who
disagreed with the estimations provided for two CD in-
stances discussed during the interview, considering them

to be overestimated. Both cycles affected 3 elements (the
first was on packages and the second on classes), which
allowed the execution of predicates to filter the trading
assets retrieved from a repository according to a certain
business logic. These two cycles, while unrelated (i.e. in
different parts of the system), shared the same logic. The
cycles were estimated at ATDI = 90 and ATDI = 55
for the package and class cycle respectively; whereas the
ideal values for P15 would have been ATDI = 10 and
ATDI = 5.

P15 supports his adjusted estimations by mentioning
that the elements in the cycles are not that coupled together
and that cycles themselves were introduced intentionally to
support a feature.

P15: “I think that this should be smaller. I’ve started
introducing [these CDs] myself, then everyone else
pretty much copy-pasted the design when they created
new entities. [...] I’ve seen the code in these classes, and
I know it’s really simple to make the change. The pred-
icates packages do not depend on the implementation of
the repositories package, so it’s just a few lines of code
that I have to change. I don’t have to make any big
architectural change to remove the dependency there.”

Given that these cycles were introduced intentionally,
it is impossible for our approach to make this distinction.
Arguably, these two smells exist within the system and
may cause a problem in the future, and, to some extent,
the estimation is justified. However, we do agree that the
estimation should not be that far from the perceived value.

7.1.2.6 Example 6: JUnit 5: As a final exam-
ple, we present another case where the participant dis-
agreed with the estimation provided by our model11.
This example concerns a GC detected in JUnit on the
org.junit.jupiter.api package, which directly con-
tained 54 files, amounting to a total of 9.800 lines of code12.

The ATDI estimated for this smell was 300. P3 was not
convinced that this value would be representative of the
effort necessary to actually split the package, but it is rather
an overestimation.

P3: “I don’t think that splitting that package would
be particularly complicated. It’s mostly annotations and
then assertions and assumptions classes. Those could be
relatively easy to split into sensible packages. It’s kind
of by design and it’s the core package, so I’m not in
agreement that this is a bad thing in this case. I would
agree in general, but maybe this is an exception.”

Indeed, the motivations provided by P3 are reasonable,
and we accept that the model did overestimate the ATDI in
this case. Again, in Section 7.2 we discuss how we use this
feedback to improve the model.

7.2 Feedback on the overall approach (RQ2.3)

In addition to eliciting the perceptions of participants on the
ATDI estimations, we also collected some general feedback
on the approach. We classified this feedback into three

11. Note that 4 examples agreeing with the estimations and 2 dis-
agreeing follows the agreement-disagreement ratio we have in our data
(75%-25%).

12. The detection threshold used for JUnit was 7.800 lines of code.

19

different categories, which are elaborated in the following
paragraphs.

7.2.0.1 Added value: Most participants (especially
the industrial ones) expressed their positive feedback on
the added value of adopting architectural smell analysis
and a technical debt index. One of the aspects that was
most helpful to most participants was being able to see the
smells graphically represented. Several participants men-
tioned that the visual representation of the packages and
classes affected by smells can support them in adopting a
refactoring strategy to make the components more indepen-
dent and reusable.

P13: “Being able to see things visually gives you an
insight that we could at least try to structure packages
a little differently.”

Other participants mentioned the usefulness of the smell
detection itself and the estimation of the index specifically
when addressing long-standing issues within the project
and for prioritisation purposes.

P9: “[...] breaking down these big, nasty packages is a
long-standing issue of the project and a barrier to our
ongoing maintenance. Having tools that can automate
detection and suggest the index is really nice.”
P2: “It might be useful in the fact that you can get
an estimate of the biggest problem, in this case a god
component, and that might be the first to look into.”

Finally, the participants acknowledged the value in com-
bining this analysis with continuous integration, as it would
help them spot emerging trends and make decisions accord-
ingly on what parts of the system to refactor next.

P5: “this is the sort of thing that you can calculate on
each commit or change and have rules like “you can’t
increase the technical debt on the project” [...]”

7.2.0.2 Discussion enabler & learning opportunity:
The participants remarked that, the fact that smells are
visualised and assigned an index representing the effort
to refactor, eases maintainability-related discussion with the
other maintainers of the project. The ensuing discussion is
also objective, as it is backed by the data collected from
the current version of the system, rather than by how one
specific user, or maintainer, sees the system.

P5: “[...] seeing the god component there might have
been good evidence for when I was trying to suggest [to
the other maintainers] the extraction of the queuing and
scheduling logic into a library.”

In addition to enabling discussion, participants also re-
ported that seeing the smells detected in the code they
wrote provided an opportunity for improving themselves
because they could understand what mistakes they made.
This would then lead, over time, to personal growth and
allow them to write code while also being aware of the
architectural implications of their design decisions. It is
noteworthy that some developers were intuitively familiar
with the concepts of architectural smells, but they did not a
have formal definition to think about them.

P15: “I think all developers could benefit from something
like that. I happen to be a big fan of clean code but
I haven’t really thought of a clean architecture to be
honest.”

7.2.0.3 Limitations of the approach and possible im-
provements: The interviewees also allowed us to identify a
few limitations and possible improvements to the approach.

Some of the smells were detected on code that did not
change in years, and was not expected to change in the
future either. While these may not be false positives, as the
smells were confirmed by engineers to exist, they should
be distinguished from other smells, elements of which are
constantly changed (and thus TD interest accumulates).
Therefore, we could combine ATDI values with TD interest
information that takes into consideration historical change
data, and give lower priority to those smells whose af-
fected elements did not change much over the previous
years/months.

One challenging issue, is that certain design choices that
are detected as architectural smells, do not pose any concern
to developers (e.g. all API-related classes are in a single
package, like in Example 6). Therefore, they perceive the
ATDI for these instances as an overestimation. One way
to improve that would be to provide more features that
allow the model to differentiate between regular classes and
abstract classes, interfaces, or annotations. That would allow
the developers to tune the model so that their design choices
are taken into account in the estimated severity of the smells.

Another limitation is that our approach does not con-
sider the case where cycles formed among classes are caused
by interfaces, which are defined much higher in the abstrac-
tion hierarchy than the normal classes themselves. These
cycles are much harder to fix because they also require fixing
the design of the interfaces. Therefore, the effort required to
fix them may be several order of magnitude higher, as it
involves changing several other classes. This aspect results
in an underestimation of the ATDI by our approach. Im-
proving on this aspect would provide much more accurate
estimations for smells with small ATDI values.

Finally, some participants expressed their concern with
the applicability of the refactoring opportunities suggested
by our analysis (smells detection and ATDI) to established
libraries and projects sensitive to certain run-time qualities
(i.e. reliability and availability). Architectural smells require
large refactorings in order to be changed, and some partici-
pants mentioned that it would be hard for them to convince
the community to make the necessary changes.

8 DISCUSSION

In this section we discuss the results obtained in our study
for each research question as well as their implications for
both researchers and practitioners.

8.0.0.1 General implications: The main implication
stemming from our results is that practitioners now have a
validated approach to measure the ATD principal generated
by architectural smells. This allows them to better track
the ATD incurred over time, identify trends in the amount
of debt incurred, and react accordingly. In particular, this
enables them to identify refactoring opportunities and plan
them as necessary. Indeed, AS are well suited for repayment
as they are targeted, meaning that it is clear for practitioners
where the debt is and what steps need to be taken in order
to repay it.

20

Moreover, our approach provides ATD principal estima-
tions for each individual AS smell instance. This is instru-
mental during the prioritisation phase, as practitioners can
adopt different prioritisation strategies based on the amount
of debt accrued by each instance. For example, some may
decide to refactor the smells with high ATDI to tackle the
biggest problems first, whereas others may decide to focus
on the small smells only and integrate AS refactoring in their
process, resulting in an incremental repayment. Yet another
example was suggested by one of the interview participants:
to avoid the introduction of commits that increase the debt
over a certain amount, thus resulting in less ATD density
over time.

To facilitate the adoption of our approach by indus-
try practitioners, an implementation was integrated into
ARCAN and is publicly available in the replication pack-
age of this study [25], or online at https://github.com/
Arcan-Tech/arcan-trial.

8.0.0.2 RQ1 implications: For researchers, the main
implication stemming from RQ1, is that techniques such
as pairwise comparison, ranking systems (e.g. TrueSkill), and
machine-learned ranking (or LTR), that are widely adopted in
other disciplines such as Information Retrieval (IR), can be
flexible enough to be applied to practical problems encoun-
tered in Software Engineering (SE).

Indeed, IR complements SE, and more specifically soft-
ware maintenance, very well. The core problem faced dur-
ing software maintenance is the complexity generated by
software, namely the difficulty to understand, browse, and
change software artefacts because of the high density of
information contained in them [73]. IR provides the means
to reduce this information overload and only access the
information that is needed the most (i.e. the most relevant)
based on a given query (e.g. what are the most severe
smells in the system?) [73]. Therefore, it comes naturally to
think of applying IR techniques to solve SE problems that
may be otherwise too complex. One example of possible
application is suggesting the issues (from the issue tracker)
that an open source contributor can address based on their
previous experience in solving issues and urgency of the
issue calculated based on the users’ comments on that issue
(e.g. new contributors can address low-urgency, low-impact
issues).

Alas, applying IR into SE in practice poses some tech-
nical challenges that may not be easily overcome in all
contexts, or worth the extra effort. Take for example the
problem posed by using pairwise comparison to order a set.
Theoretically, the number of pairwise comparisons that are
necessary to obtain a perfectly ordered set grows factorially
with the number of elements in the set. This problem, in
fact, arises only to solve another, arguably bigger problem
that many IR techniques face: the need of a data set to train a
machine learning model. This makes several IR techniques
a feasible solution to a ML model, only if a data set already
exists, or there is a practical way to create a such data set. In
our case, we were able to create a data set by using pairwise
comparison, and subsequently managed to circumvent the
problem that pairwise comparison creates by employing
several different techniques; but these are clearly limited
to our application and may not always be feasible in other
contexts.

Nevertheless, we believe that IR applications to SE are
quite promising and that there are a lot of potential applica-
tions of IR to SE [73], [74]. Compared to the traditional SE
approach of designing an algorithm to solve a problem, IR
shifts the effort from designing the algorithm to designing
the data representing the problem to be solved. The major
drawback is that the lack of means of collecting such data
hinders the applicability of such techniques. However, a
data-driven solution is more likely to be effective. In fact,
previous studies from the literature have already proven
the potential of Recommendation Systems, for example, to
suggest design patterns to apply to a code base [75], or
suggest the libraries to use for a software project and how
to use them [76]. This work has improved on top of that
by also demonstrating the potential of ranking systems (e.g.
TrueSkill) and machine-learned ranking (LTR). One concrete
idea stemming from our results, is to apply LTR models to
create a system that helps developers finding refactorings
examples given an AS, or in other words a search engine for
refactoring examples.

8.0.0.3 RQ2 implications: An interesting remark
stemming from the results of RQ2.1 and RQ2.2, is that ATDI
does not need to be precise in order to be considered representative
of the effort needed to refactor. This is especially true for large
estimations (i.e. ATDI > 500), because developers seemed
to value more the relative value of an estimation (w.r.t. to
other estimations) over its absolute value. Specifically, if in
their mind the difference between the largest estimation
and the second largest estimation was big enough, then
both estimations were deemed representative of the effort.
However, for smaller instances, some developers (mostly
open source ones) did not fully agree with the estimated
value of at least one of the instances they were shown. This
shows that the smaller estimations need to be more precise in
order for them to better resonate with the gut feeling of the
engineers and be considered representative. One way this
could be achieved, is by implementing the improvements
mentioned in RQ2.3 (Section 7.2). Nonetheless, given that a
large percentage of the maintenance effort is generated by
the top few AS [11], we claim that, to a certain extent, our
approach provides meaningful and representative estima-
tions that can be used to both provide objective evidence to
make informed prioritisation decisions and enable developers
to reliably plan the allocation of resources during repayment.

An observation stemming from the results of RQ2.3 is
that most projects prioritise other quality attributes over
Maintainability/Evolvability. In our previous work [77] on
the matter, we found that (industrial) software practitioners
prioritise run-time qualities (e.g. Performance, Availability,
Evolvability) over design-time qualities (e.g. Maintainabil-
ity, Evolvability, Compatibility, etc.). These findings also
apply to this study as well, but they also uncover a rather
interesting problem that all TD management approaches
share. For projects such as established libraries (e.g. JUnit,
RxJava, etc.) and high-availability systems (e.g. Cassandra),
applying refactorings is almost impossible, as several factors
drastically limit the type of changes that the maintainers
can make. For example, moving a class to another package
would change its fully qualified name, thus breaking all
third party systems depending on it (e.g. think of JUnit).
With a limited amount of options to actually perform ATD

https://github.com/Arcan-Tech/arcan-trial
https://github.com/Arcan-Tech/arcan-trial

21

repayment, properly managing ATD becomes harder. It is
important to note that this is not specific to our approach,
but rather it is a problem faced by all approaches that
identify architectural smells and other issues that require
large refactorings in order to be removed.

This issue is further aggravated by the fact that many
libraries were written before the advent of Java 9 modules
and the strong encapsulation they provide. This means that
several classes that were only intended to be used internally
are instead depended upon by the users of the library, which
makes them very hard to change. Moreover, several senior
maintainers of the project are reluctant to apply any sort of
refactoring for the fear of introducing a bug that would
undermine the runtime stability of the project. Contributors
are forced to pay extra TD interest while performing typical
maintenance tasks but cannot make the large refactorings
required to reduce the amount of interest paid in fear of
breaking the backwards compatibility or a key runtime
quality of the system. This is a deadlock situation for main-
tainers and a lose-lose situation for the overall project, as any
action undertaken is a risk to the stability of the project. A
possible solution is to embrace API-disruptive changes (e.g.
move class to another package) and only include them in
major releases of the system. This strategy comes with the
risk of fragmenting the user base and having to maintain
two, or more, versions of the same project simultaneously.

To conclude, the main implication for practitioners aris-
ing from RQ2 is that they can rely on our approach
to manage ATD principal, but they might need careful
consideration on how to exactly implement it in certain
projects that are sensible to change. Projects that lack proper
encapsulation may consider planning for a major release
that breaks backwards compatibility, whereas projects that
prioritise run-time qualities, may apply small, incremental
refactorings that improve the state of the system without
compromising its availability or reliability.

9 THREATS TO VALIDITY

This section describes the threats to validity we identified
for this study. We classified them under construct valid-
ity, external validity, and reliability, following the guidelines
proposed by Runeson et al. [47]. Internal validity was not
considered as we did not examine causal relations [47].

Construct validity: This aspect of validity concerns
the extent to which this study measures what it is claiming
to be measuring [47]. In other words, whether the data
collection and data analysis methodologies truly allow us
to answer the research questions we asked. To ensure that,
we developed a case study following a well-known protocol
template [78], kept track of how each finding links to the
data (chain of evidence) [47], and the study design was
reviewed by the two authors iteratively as well as by other
researchers within the same research group.

A possible threat to construct validity lies in our selection
to use ARCAN as the tool to detect architectural smells.
Lefever et al. [79] have shown that technical debt detection
tools report divergent, if not conflicting, results. This may
very well also be the case with ARCAN despite not being
included in Lefever et al.’s study. The discrepancy is caused
by the fact that different tools adopt different detection rules

and provide different implementations of how to detect
architectural smells. Therefore, we cannot claim that the re-
sults obtained through ARCAN are comparable with results
obtained from other tools. However, it is important to note
that this would be the case even if we used any other tool [79].
In fact, we also show that this is indeed the case if we use the
tool Designite (see replication package [25]), resulting in the
two tools outputting different values of ATDI. Despite this,
the output of ATDI with the two tools is highly correlated
(Spearman ρ = 0.79), thus meaning that using different
tools is unlikely to significantly affect the conclusions drawn
(i.e. two projects are likely to be ranked similarly regardless
of the tool used.). Moreover, ARCAN’s the detection rules
and algorithms are based on independent, previous work,
namely, CD is based on the Acyclic Dependencies Princi-
ple [6], [16], HL and UD on the definitions provided by
Samarthyam et al. [80] and Martin [16], and GC on Lippert
and Roock’s principles [6]. ARCAN was also validated in
a number of different studies [9], [20], [81]. Therefore, by
combining these two aspects (independent detection rules
and ATDI correlation with Designite) we consider this threat
mitigated.

Another threat to construct validity arises from the fact
that each participant was asked to discuss (at most) 4 AS
instances, and this may not have been enough for them to
have a complete impression of the performance of the ap-
proach. This choice was imposed by the limited amount of
time we had for each interview (30 minutes), as discussing
4 instances usually required 15 to 20 minutes, and the intro-
duction 10 to 12 minutes. However, this format gave us the
opportunity to discuss the technical details for each instance
and better comprehend the point of view, and rationale, of
the participants. This trade-off between quantity and quality
allowed us to better motivate our findings and strengthen
the chain of evidence. Therefore, we consider this threat as,
at least partially, mitigated.

Two more threats to construct validity lie in the selection
criteria used to create the training dataset (Table 2) for our
machine learning model. In particular, one could first argue
that the minimum number of lines of code is not sufficiently
large to guarantee that only non-toy projects were used,
and second, that the knowledge of the annotators may
have biased the selection excessively. Concerning the first
criterion (i.e. minimum of 10.000 lines of code) we argue that
only one project is 10.000 lines of code big, 3 projects have
between 23.000 and 31.000 lines of code, and 4 of them have
more than 100.000 – with an average of 115.000. Concerning
the second criterion, we strived to ensure that the projects
selected are substantially diverse (web frameworks, parsers,
test frameworks, and scientific tools) and, with the excep-
tion of two projects (Arcan and AStracker), are relatively
well-known open source projects that any other group of
annotators could have selected. Thus, we argue that the
set of projects selected is not sufficiently affected by the
specific group of annotators. Therefore, we consider these
two threats as to a large extent mitigated.

A final threat to construct validity lies in the method
used to sample AS to show to practitioners. An improper
sampling strategy could have caused the sample of smells
extracted to mostly focus on smells of a certain type, or on
smells of which estimations lie within a specific range (also

22

known as “cherry-picking”). This would have inherently
biased the results and therefore the outcome of our study.
To avoid such a problem, we adopted stratified random
sampling to ensure we select the same amount of smells
for each smell type (e.g. CD, HL, etc.) while the actual
instances sampled for a smell type are picked randomly.
However, the main problem of this strategy is that it does
not reflect the actual ratios of smell types measured in the
real world. Nonetheless, we consider this threat as mitigated,
as stratified random sampling ensured that the approach is
equally validated for all smell types considered while also
avoiding “cherry-picking” a specific range of values.

External validity: This aspect of validity concerns the
extent to which it is possible to generalise the results of the
study. In other words, are the results of relevance for cases
other than the one analysed [47]?

A threat to external validity is the sample of projects
used to create the training and test sets for our machine
learning model (step ‘a’ in Figure 2). More specifically, the
pool of projects we sampled smells from, was limited to
the projects that our annotators were familiar with. This
resulted in the projects (see Table 2) being relatively small
(only 2 projects with more than 100.000 lines of code) and
the number of application domains covered being relatively
limited (3 static analysers, 2 web frameworks, and 3 test-
ing frameworks), on top of all being open source projects.
Ultimately, this could impact the capability of the machine
learning model to properly rank AS instances that may be
very different than the instances in our training set, both
in terms of size and structure. Nonetheless, we believe that
the validation results obtained by RQ2 show that this threat
only poses a limited risk, as the estimations of the whole
approach were not severely impacted despite most of the
systems used to validated the results (Tables 3 and 4) being
very different than the ones contained in the training set
(Table 2).

Another threat to external validity is the lack of software
architects in our list of participants. This threat prevents us
from claiming that the results of RQ2 can also represent
the opinions of software architects, as they may have a
completely different opinion on the approach we proposed.
We can, however, claim the generalisation of our results
to developers and senior developers with several years of
experience.

Finally, the last threat to external validity is the fact that
our pool of industrial participants is rather limited. We only
collaborated with two companies, both are SMEs (Small-
medium enterprises) and both are European. Therefore, it
is hard to ensure the full generalisation of the RQ2 results
outside these bounds. However, it is important to notice
that almost all of the open source participants were full-
time developers in companies from all over the world, and
only contributed to the open source project as part of their
work, or as a hobby. Therefore, we believe that this threat is
partially mitigated and that we can claim the generalisation of
our results to full-time open source contributors, industrial
practitioners that contribute to open source projects, and (to
some extent) industrial practitioners operating in SMEs.

Reliability: Reliability is the aspect of validity focus-
ing on the degree to which the data collection and analysis
depend on the researchers performing them [47].

While we cannot share the transcription of the interviews
for confidentiality reasons, we do, however, provide a repli-
cation package [25] containing the design of this study, the
complete list of questions asked to our interview partici-
pants, the data set used to train the machine learning model,
and the tool ARCAN implementing the ATDI calculation.
This should allow researchers to assess the rigour of the
study or replicate the results using a different set of projects.

A common threat to reliability when qualitative data
is analysed, is the potential bias introduced by the re-
searcher performing the coding. This threat was mitigated
by having a second researcher inspect both the codes and
intermediate results during each round of coding. All the
feedback received was then integrated and the subsequent
coding sessions adopted the updated codes. The analysis
was performed using well-established techniques already
used in previous work on the same topic as well as also in
different fields (i.e. CCM and Grounded Theory). Therefore,
we consider this threat mitigated.

Another threat to reliability is posed by potential im-
proper application of machine learning techniques during
the model engineering phase (i.e. data set creation and
model evaluation). To avoid common pitfalls when imple-
menting machine learning into our approach, the whole
process was supervised by a third researcher specialised in
this field. Thus, we consider this threat, at least partially,
mitigated.

10 RELATED WORK

In this section we report on previous research on topics
related to this study, i.e. to the estimation of the princi-
pal of architectural technical debt. Specifically, we review
related work on the following two categories: approaches
estimating architectural TD principal (Section 10.1), and ap-
proaches estimating any other type of TD principal (Section
10.2). Our approach is directly comparable only to the first
category, i.e. to similar work on ATD principal estimation;
this comparison is presented at the end of Section 10.1.

10.1 Approaches estimating architectural debt princi-
pal

Xiao et al. [11] have proposed a formal model to quan-
tify architectural debt principal using a History Coupling
Probability (HCP) matrix. The HCP matrix is calculated
using conditional probability of changing files and is then
used to identify candidates of debt items. Candidates were
then modelled using different regression models (linear,
logarithmic, etc.) to find which model fits best the interest
of the debt items in the system. Next, debt items were
ranked based on the effort required to fix them. Xiao et al.
evaluated their approach on 7 open source projects, showing
that a significant proportion (51% to 81%) of the overall
maintenance effort was consumed by paying interest on
architectural debt items. Their approach is implemented into
their tool called DV8.

Roveda et al. [12] developed an architectural technical
debt index based on the (dependency-based) architectural
smells detected in the system. The index is based on the
number of smells detected in the system, their severity, the

23

history of the smell in the system, and a few dependency
metrics defined by Martin [16]. The calculation of severity
takes into consideration the PageRank of the architectural
smell calculated on the dependency graph of the system.
Next, Roveda et al. proceeded to analyse the Qualitas
Corpus data set [82], [83] and compare the results with
Sonarqube’s technical debt index. The comparison showed
that there is no correlation in the historical trends of the
two indexes, leading the authors to conclude that the two
indexes are independent.

Wu et al. [84] created and validated an architectural
debt index within a big multinational software company.
The index is called Standard Architecture Index (SAI) and
is composed of a number of measures reflecting recurring
architecture problems reported by the company’s engineers
and architects. More specifically, measures are based on
coupling, cohesion, rate of cyclic dependencies, instability,
modularity violation rate, and many others. The index went
through two major iterations within the company and the
authors also compared it to actual productivity measure-
ments. The improvements measured by SAI correlated with
improvements in productivity for the two products the
index was tested on.

Martini et al. [85] proposed a semi-automated approach
to identify and estimate the architectural debt principal of a
project owned by a large telecom company that is written in
C++. The approach features a measurement system based on
the ISO/IEC 15939:2007 standard to estimate the urgency for
refactoring for each component in the system based on two
key concepts: current complexity of the system and effort
spent maintaining the system. To calculate these, several
metrics and algorithms were taken into consideration by
the authors, such as the number of files, the number of
lines of code, the number of changes in all files, McCabe’s
and Halstead’s complexity metrics. For the calculation of
the effort, however, engineers need to be involved, thus
making the process semi-automated.in this regarded with
their model. The results showed that the engineers agreed
that the output of the model was useful to identify any
architectural debt that needs refactoring and that the effort
estimation estimates correctly the business value of doing
such a refactoring.

Verdecchia et al. [86] proposed a generalised approach
to calculate the technical debt principal index of a system
leveraging statistical analysis. Unlike the aforementioned
approaches, Verdecchia et al. aimed at designing a process
that is language-independent, tool-independent, supports
tool composability with multiple levels of granularity of
their analysis (e.g. class, package, module, etc.). To achieve
such a goal, they formalised the problem mathematically
and considered the output of any tool as a set of archi-
tectural rules that are applied to every artefact in the sys-
tem. Next, they incorporated into the mathematical model
granularity levels and clusters of architectural rules (called
architectural dimensions by the authors). While this ap-
proach does have several advantages (as mentioned above),
it also comes with a number of drawbacks: for example, it
is dependant on a benchmark of software projects (which
has to be continuously updated) to calculate some of the
statistics used during the calculation of the index. The au-
thors evaluated the validity of the approach in a subsequent

study using questionnaires [87].

Table 6 summarises the differences between related work
on ATD principal estimation and this work. Our work
improves over related work on two main points. First, we
are the first to propose a learning-to-rank machine learning-
based approach to tackle this problem rather than relying
on manually-set thresholds [84], [85] or arbitrary proxies of
severity [12]. Second, we validated our approach by inter-
viewing software developers from both industrial and open
source projects; most other approaches were only evaluated,
in the sense of performing measurements and comparisons,
while only two were validated, in the sense of confirm-
ing they actually provide benefits to developers, but in a
limited way. Specifically, evaluation was mostly performed
on open source systems [11], [12], [86], whereas the only
two studies that performed a validation were in both cases
within a single company13 [84], [85], thus critically reducing
the generalisation of the results obtained. Additionally, our
approach is the only one that provides a publicly-available
tool that implements the approach [25].

The use of the smell characteristics of an architectural
(or code) smell to predict its severity is certainly not a
new concept in software engineering [12], [26], [41], [42],
[43]. Some work has focused on the use of metrics by
selecting arbitrary, hand-picked thresholds, or weights, and
combining such metrics into a single value representing
the severity of a smell [26], [42]. Others experimented with
using benchmarks of open source systems to automatically
define thresholds [41] with the hope of reducing the bias
introduced by hand-picked metrics. Alas, both of these
strategies are inherently flawed. In the former case, hand-
picked thresholds, even if based on heuristics and exper-
tise, are severely limited to specific cases dictated by the
assumptions (e.g. how much a design principle influences
a smell) used to set them in the first place. Instead, our
ML model deduces these from the training set as part of
the training process. In the latter case, benchmark-based
approaches assume that the systems included in the bench-
mark cover the whole spectrum of good, medium, and low
quality systems and that the metrics computed on them are
distributed equally for ‘good’ and ‘bad’ values of the metric
itself (e.g. the Complexity metric only has values for > .50
in the benchmark, so .50 is considered the lowest value of
Complexity when in reality it might be a medium value).

To conclude, the approach presented in this paper does
not suffer from some of the well-known shortcomings that
other studies do [4]. In particular, we developed a fully-
automated approach that does not rely on hand-picked
thresholds, or benchmarks, but instead uses machine learn-
ing to overcome these shortcomings; then, we validated the
approach by involving practitioners from multiple compa-
nies and from both open source and industry. In addition,
an implementation of our approach is also freely available
in the replication package of this paper [25].

13. Note that several of the open source engineers that we inter-
viewed were also working in industry.

24

TA
BL

E
6:

C
om

pa
ri

so
n

of
re

la
te

d
w

or
k

w
it

h
th

e
ap

pr
oa

ch
pr

op
os

ed
in

th
is

pa
pe

r
(*

A
bs

ol
ut

e:
m

ea
su

re
m

en
t

is
de

pe
nd

an
t

on
ly

on
th

e
in

pu
t;

R
el

at
iv

e:
m

ea
su

re
m

en
t

de
pe

nd
s

on
bo

th
a

be
nc

hm
ar

k
(o

r
M

L
m

od
el

)
an

d
on

th
e

in
pu

t)
.

R
el

at
ed

W
or

k
Th

is
w

or
k

[1
1]

[1
2]

[8
5]

[8
4]

[8
6]

In
pu

t
So

ur
ce

co
de

an
d

ar
-

ch
it

ec
tu

ra
ls

m
el

ls

H
is

to
ri

ca
l

ch
an

ge
da

ta
,

So
ur

ce
co

de
,

bu
g

tr
ac

ke
rs

,
an

d
ar

ch
it

ec
tu

ra
ls

m
el

ls

Ja
va

By
te

co
de

,
ch

an
ge

da
ta

,
an

d
ar

ch
it

ec
tu

ra
ls

m
el

ls

U
M

L
m

od
el

.S
ou

rc
e

co
de

an
d

cu
st

om
th

re
sh

ol
ds

H
is

to
ri

ca
l

ch
an

ge
da

ta
,

so
ur

ce
co

de
,

an
d

qu
es

ti
on

na
ir

es

R
es

ul
ts

of
3r

d
pa

rt
y

to
ol

s

Te
ch

ni
qu

e

M
L

to
es

ti
m

at
e

se
ve

ri
ty

vi
a

sm
el

l
ch

ar
ac

te
ri

st
ic

s
an

d
lin

es
of

co
de

cr
ea

ti
ng

sm
el

l
to

es
ti

m
at

e
re

fa
ct

or
in

g
co

m
pl

ex
it

y

R
eg

re
ss

io
n

m
od

el
s

of
nu

m
be

r
of

ch
an

ge
s,

bu
gs

re
po

rt
ed

,
an

d
lin

es
of

co
de

co
m

m
it

te
d

pe
r

fil
e

Pa
ge

R
an

k
as

pr
ox

y
fo

r
se

ve
ri

ty
,n

um
be

r
of

de
pe

nd
en

ci
es

of
th

e
sm

el
l,

an
d

hi
s-

to
ri

ca
lc

ha
ng

es

A
gg

re
ga

ti
on

of
m

et
ri

cs
w

it
h

he
ur

is
ti

ca
lly

-s
et

th
re

sh
ol

ds

A
gg

re
ga

ti
on

of
m

et
ri

cs
us

in
g

ar
bi

tr
ar

y
th

re
sh

ol
ds

ba
se

d
on

op
in

io
n

of
en

gi
ne

er
s

A
lg

or
it

hm
ic

ap
pr

oa
ch

ba
se

d
on

ge
ne

ra
lis

ed
ru

le
s

fo
r

3r
d

pa
rt

y
to

ol
s’

vi
ol

at
io

ns
an

d
a

be
nc

hm
ar

k
of

sy
st

em
s

M
ea

su
re

m
en

t*
R

el
at

iv
e

A
bs

ol
ut

e
R

el
at

iv
e

A
bs

ol
ut

e
R

el
at

iv
e

R
el

at
iv

e

O
ut

pu
t

A
T

D
pr

in
ci

pa
la

s
an

in
de

x
A

TD
in

te
re

st
pa

id
so

fa
r

A
TD

pr
in

ci
pa

la
s

an
in

de
x

A
TD

pr
in

ci
pa

la
s

an
in

de
x

U
rg

en
cy

to
re

fa
ct

or
a

co
m

po
ne

nt
an

d
m

od
ul

ar
is

at
io

n
in

-
de

x

A
TD

pr
in

ci
pa

la
s

an
in

de
x

A
ut

om
at

io
n

Fu
ll

Fu
ll

Fu
ll

Pa
rt

ia
l

Fu
ll

Fu
ll

bu
td

ep
en

ds
on

3r
d

pa
rt

y
to

ol
A

va
il

ab
il

it
y

Ye
s

N
o

Ye
s

Ye
s

N
o

Ye
s

V
al

id
at

io
n

or
Ev

al
ua

ti
on

V
al

id
at

ed
th

ro
ug

h
in

te
rv

ie
w

s
w

it
h

bo
th

op
en

so
ur

ce
an

d
pr

of
es

si
on

al
en

gi
ne

er
s

Ev
al

ua
te

d
on

op
en

so
ur

ce
sy

st
em

s
Ev

al
ua

te
d

on
op

en
so

ur
ce

sy
st

em
s

V
al

id
at

io
n

w
it

hi
n

a
co

m
pa

ny
V

al
id

at
io

n
w

it
hi

n
a

co
m

pa
ny

Ev
al

ua
te

d

10.2 Approaches estimating other types of technical
debt principal

Letouzey et al. [32] designed the well-known SQALE anal-
ysis model that hierarchically aggregates from rough low-
level measurements into a high-level index that is meant to
represent the status of the whole system. More specifically,
the authors describe how to aggregate the data coming from
two different types of hierarchies: an artefact hierarchy (e.g.
from lines of code to methods, from methods to classes,
etc.) and a quality hierarchy (e.g. Maintainability is broken
down into Readability, Changeability, etc.). Additionally,
they also analysed how different data scales (e.g. nominal,
ratio, interval, etc.) should be synthesised and aggregated.
SQALE was later adopted and evolved by several tools,
including SonarQube14 and SQuORE15.

Nugroho et al. [37], presented a technical debt prin-
cipal and interest estimation approach. Their approach
uses a straightforward (linear) mathematical model to map
ISO/IEC 9126 quality attributes to a series of source code
properties. Next, these properties were mapped to a rating
system with 5 different levels (i.e. star-based system) to rep-
resent the current quality level of the system. The approach
thus allows to estimate the current principal by calculating
the amount of effort required to rework the system to get a
higher quality rating (e.g. from 3 stars to 5 stars). Similarly,
the interest is calculated by using the maintenance effort at
a given quality level and then subtracting the maintenance
effort at the desired quality level. After describing the ap-
proach, Nugroho et al. proceeded to evaluate it on an 18-
year-old system that is written in multiple programming
languages and has over 760.000 lines of code. The case
study was designed with the goal of illustrating that the
proposed approach could be applied to answer practical
questions related to software quality improvement over 10
years of development of the said project. Using the proposed
approach, Nugroho et al. showed that 75% of the system
needs to be reworked in order to meet the ideal quality level
(5 stars).

Marinescu [34] proposed a technical debt index based
on design flaws, which include most of the code smells
identified by Fowler and Beck [17]. Marinescu assigned
to each design flaw (1) a degree to which it influences
coupling, cohesion, complexity, and encapsulation; a (2)
granularity (e.g. class, method, etc.), and (3) a metric that
influences their severity (e.g. length of duplicated code for
the duplicated code design flaw). The overall score is then
computed by aggregating the impact score of each design
flaw detected in the system and normalising by total lines
of code in the system. The approach was evaluated on two
well-known Java systems, allowing to derive insights on
their evolution and on the parts affected by design flaws. In
particular, Marinescu established that several types of flows
degraded over time, thus demonstrating the practicality of
the approach in real-world scenarios.

In their 2012 paper, Curtis et al. [33] report the approach
adopted by CAST’s Application Intelligence Platform to
estimate technical debt principal. The approach hierarchi-
cally divides Maintainability in multiple quality attributes

14. Visit https://www.sonarqube.org/.
15. Visit https://www.squoring.com/.

https://www.sonarqube.org/
https://www.squoring.com/

25

according to ISO/IEC 9126 and ISO/IEC 25010. At the
bottom of the hierarchy, there are up to 506 quality rules,
and each rule may be evaluated for more than one quality
attribute. The cost to fix all the violations (i.e. the princi-
pal) is then calculated by assigning to each rule a high,
medium, or low severity, and then multiplying it by the
average number of hours needed to fix each type (e.g. low
severity requires fewer hours). Curtis et al. also described
their experience analysing 700 applications and measuring
technical debt three times, each time at a different point
in the application’s history. The results suggest that the
analysis and measurement of technical debt principal using
the proposed approach can be used in conjunction with
structural quality priorities to guide management decisions
regarding future resource allocation.

Mayr et al. [88] proposed a classification scheme that en-
ables systematic categorisation of technical debt-estimating
approaches. Moreover, they also propose their own ap-
proach based on a benchmarking-oriented calculation of the
technical debt principal. Similarly to other approaches, the
approach of Mayr et al. uses a set of rules and abstraction
dimensions. Contrary to other approaches, however, they
also rely on a benchmark of systems to create a baseline
quality level. The baseline is simply the distribution of
different rules in the benchmark systems. The remediation
cost (i.e. the principal) is then calculated as a linear function
of the number of violations to be fixed, the effort required
for each violation, and the cost rate. This approach was
evaluated on two open source projects; the results show
that the approach was able to provide stakeholders with the
expected remediation costs depending on the actual quality
of the project and target level.

While all the aforementioned approaches estimate TD
principal, they mostly focus on code debt, therefore, they
are not directly comparable to our work.

11 CONCLUSION AND FUTURE WORK

The goal of this work was to estimate the architectural
debt principal using architectural smells as a input. For this
purpose, we designed an approach that relies on machine
learning and static analysis of the source of the smell to
estimate the effort necessary to refactor a smell. Next, we
created a data set to rank architectural smells by their
severity using well-known techniques typically used in
information retrieval (e.g. TrueSkill). Then, we trained a
type of ML model typically used in information retrieval
(called learning-to-rank) and obtained excellent results, thus
demonstrating that it is possible to apply these techniques
in software engineering. Finally, we validated the output of
the whole approach (not only of the ML model), through a
case study where we interviewed 16 engineers from both
open source and industry. The results showed that most
of the estimations (≥ 70%) provided by our approach are
representative of the effort necessary to refactor a smell.
The results also suggested that for large estimations our
approach was very precise; however, for some cases, smaller
estimations were not as precise. We also identified several
points of improvement for our approach, such as taking
into consideration the class hierarchy, as it could have a

big influence on the estimations provided by the approach
(especially the smaller ones).

Overall, the results confirm that the estimations pro-
vided by our approach are, for the most part, in line with
the effort estimations expected by industry practitioners.
This means that our approach is a viable option that could
allow practitioners to track ATD principal of a system,
plan remediation strategies, and prioritise individual AS
instances.

Concerning future work, we identified several opportu-
nities. The first one is to add support for C/C++ systems
by expanding the data set of the ML model with C/C++
systems, as ARCAN already supports the detection of AS for
these systems. Another future work opportunity is to im-
prove the estimations as highlighted in Section 7.2, namely
extend the ML model with more features and consider spe-
cial cases such as cycles in the class hierarchy layers. Finally,
we plan to complement the estimation of the principal with
the estimation of the interest – i.e. the cost of maintaining
the current solution – by exploiting change metrics. This was
also requested by some of our interviewees who understood
that in order to take a refactoring decision, they also require
to know the cost of keeping the system as is.

ACKNOWLEDGEMENTS

This work was supported by the ITEA3 research project
under grant agreement No. 17038 VISDOM.

A special thanks to Cezar Sas for helping us better im-
plement and use the machine learning techniques adopted
in this paper.

REFERENCES

[1] P. Avgeriou, P. Kruchten, I. Ozkaya, and C. Seaman, “Manag-
ing Technical Debt in Software Engineering (Dagstuhl Seminar
16162),” Dagstuhl Reports, vol. 6, no. 4, pp. 110–138, 2016.

[2] W. Cunningham, “The WyCash Portfolio Management System,”
SIGPLAN OOPS Mess., vol. 4, pp. 29–30, dec 1992.

[3] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton,
“Measure it? Manage it? Ignore it? software practitioners and
technical debt,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering - ESEC/FSE 2015, ESEC/FSE
2015, (New York, New York, USA), pp. 50–60, ACM Press, 2015.

[4] I. Khomyakov, Z. Makhmutov, R. Mirgalimova, and A. Sillitti, “An
Analysis of Automated Technical Debt Measurement,” in Lecture
Notes in Business Information Processing, vol. 378 LNBIP, pp. 250–
273, Springer, Cham, may 2020.

[5] P. C. Avgeriou, D. Taibi, A. Ampatzoglou, F. Arcelli Fontana,
T. Besker, A. Chatzigeorgiou, V. Lenarduzzi, A. Martini,
A. Moschou, I. Pigazzini, N. Saarimaki, D. D. Sas, S. S. De Toledo,
and A. A. Tsintzira, “An Overview and Comparison of Technical
Debt Measurement Tools,” IEEE Software, vol. 38, pp. 61–71, may
2021.

[6] S. R. Martin Lippert, Refactoring in Large Software Projects: Perform-
ing Complex Restructurings Successfully. 2006.

[7] J. Garcia, P. Daniel, G. Edwards, and N. Medvidovic, “Identifying
Architectural Bad Smells,” in Proceedings of the European Conference
on Software Maintenance and Reengineering, CSMR, pp. 255–258,
2009.

[8] R. Verdecchia, I. Malavolta, and P. Lago, “Architectural Technical
Debt Identification: the Research Landscape,” in 2018 ACM/IEEE
International Conference on Technical Debt, 2018.

[9] F. Arcelli Fontana, F. Locatelli, I. Pigazzini, and P. Mereghetti, “An
Architectural Smell Evaluation in an Industrial Context,” no. c,
pp. 68–74, 2020.

[10] D. Sas, I. Pigazzini, P. Avgeriou, and F. A. Fontana, “The Percep-
tion of Architectural Smells in Industrial Practice,” IEEE Software,
vol. 38, pp. 35–41, nov 2021.

26

[11] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying
and quantifying architectural debt,” in Proceedings - International
Conference on Software Engineering, vol. 14-22-May-, pp. 488–498,
IEEE Computer Society, 2016.

[12] R. Roveda, F. A. Fontana, I. Pigazzini, and M. Zanoni, “Towards an
architectural debt index,” in Proceedings - 44th Euromicro Conference
on Software Engineering and Advanced Applications, SEAA 2018,
pp. 408–416, IEEE, aug 2018.

[13] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation
of ir techniques,” ACM Transactions on Information Systems (TOIS),
vol. 20, no. 4, pp. 422–446, 2002.

[14] E. Štrumbelj and I. Kononenko, “Explaining prediction models
and individual predictions with feature contributions,” Knowledge
and information systems, vol. 41, no. 3, pp. 647–665, 2014.

[15] F. A. Fontana, R. Roveda, and M. Zanoni, “Technical Debt Indexes
Provided by Tools: A Preliminary Discussion,” in Proceedings -
2016 IEEE 8th International Workshop on Managing Technical Debt,
MTD 2016, pp. 28–31, Institute of Electrical and Electronics Engi-
neers Inc., dec 2016.

[16] R. C. Martin, J. Grenning, and S. Brown, Clean architecture: a
craftsman’s guide to software structure and design. Prentice Hall, 2018.

[17] M. Fowler and K. Beck, Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1 ed., 2002.

[18] F. Arcelli Fontana, V. Lenarduzzi, R. Roveda, and D. Taibi, “Are
architectural smells independent from code smells? An empirical
study,” Journal of Systems and Software, vol. 154, pp. 139–156, 2019.

[19] D. Sas, P. Avgeriou, and F. Arcelli Fontana, “Investigating instabil-
ity architectural smells evolution: an exploratory case study,” in
35th International Conference on Software Maintenance and Evolution,
pp. 557–567, IEEE, sep 2019.

[20] F. Arcelli Fontana, I. Pigazzini, R. Roveda, D. Tamburri, M. Zanoni,
and E. D. Nitto, “Arcan: A tool for architectural smells detection,”
Proceedings - 2017 IEEE International Conference on Software Archi-
tecture Workshops, ICSAW 2017: Side Track Proceedings, pp. 282–285,
2017.

[21] D. L. Parnas, “Designing software for ease of extension and con-
traction,” IEEE transactions on software engineering, no. 2, pp. 128–
138, 1979.

[22] W. P. Stevens, G. J. Myers, and L. L. Constantine, “Structured
design,” IBM Systems Journal, vol. 13, no. 2, pp. 115–139, 1974.

[23] F. Arcelli Fontana, V. Ferme, M. Zanoni, and A. Yamashita, “Auto-
matic metric thresholds derivation for code smell detection,” Inter-
national Workshop on Emerging Trends in Software Metrics, WETSoM,
vol. 2015-Augus, pp. 44–53, 2015.

[24] R. Pawlak, M. Monperrus, N. Petitprez, C. Noguera, and L. Sein-
turier, “Spoon: A Library for Implementing Analyses and Trans-
formations of Java Source Code,” Software: Practice and Experience,
vol. 46, pp. 1155–1179, 2015.

[25] “Replication package zip file.” https://dx.doi.org/10.6084/m9.
figshare.19823323. Accessed: 2022-05-23.

[26] J. Laval, J.-R. Falleri, P. Vismara, and S. Ducasse, “Efficient Re-
trieval and Ranking of Undesired Package Cycles in Large Soft-
ware Systems.,” The Journal of Object Technology, vol. 11, p. 4:1, apr
2012.

[27] H. A. Al-Mutawa, J. Dietrich, S. Marsland, and C. McCartin, “On
the shape of circular dependencies in java programs,” in Pro-
ceedings of the Australian Software Engineering Conference, ASWEC,
pp. 48–57, IEEE, apr 2014.

[28] M. I. Murillo, A. Pacheco, G. López, G. Marı́n, and J. Guzmán,
“Common Causes and Effects of Technical Debt in Costa Rica: In-
sighTD Survey Replication,” Proceedings - 2021 47th Latin American
Computing Conference, CLEI 2021, 2021.

[29] N. Rios, L. Mendes, C. Cerdeiral, A. P. F. Magalhães, B. Perez,
D. Correal, H. Astudillo, C. Seaman, C. Izurieta, G. Santos, and
R. Oliveira Spı́nola, “Hearing the Voice of Software Practitioners
on Causes, Effects, and Practices to Deal with Documentation
Debt,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
vol. 12045 LNCS, pp. 55–70, mar 2020.

[30] N. Rios, R. Oliveira Spı́nola, M. Mendonça, and C. Seaman,
“The Most Common Causes and Effects of Technical Debt: First
Results from a Global Family of Industrial Surveys,” Proceedings
of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, vol. 18, 2018.

[31] A. Ampatzoglou, A. Michailidis, C. Sarikyriakidis, A. Ampat-
zoglou, A. Chatzigeorgiou, and P. Avgeriou, “A framework for

managing interest in technical debt: An industrial validation,” in
Proceedings - International Conference on Software Engineering, 2018.

[32] J. L. Letouzey and T. Coq, “The SQALE analysis model an analysis
model compliant with the representation condition for assessing
the quality of software source code,” in Proceedings - 2nd Inter-
national Conference on Advances in System Testing and Validation
Lifecycle, VALID 2010, pp. 43–48, 2010.

[33] B. Curtis, J. Sappidi, and A. Szynkarski, “Estimating the principal
of an application’s technical debt,” IEEE Software, vol. 29, pp. 34–
42, nov 2012.

[34] R. Marinescu, “Assessing technical debt by identifying design
flaws in software systems,” IBM Journal of Research and Develop-
ment, vol. 56, pp. 9:1–9:13, sep 2012.

[35] A. Chatzigeorgiou, A. Ampatzoglou, A. Ampatzoglou, and
T. Amanatidis, “Estimating the breaking point for technical debt,”
in 2015 IEEE 7th International Workshop on Managing Technical Debt,
MTD 2015 - Proceedings, pp. 53–56, Institute of Electrical and
Electronics Engineers Inc., nov 2015.

[36] Y. Kamei, E. Maldonado, E. Shihab, and N. Ubayashi, “Using
analytics to quantify the interest of self-admitted technical debt,”
in CEUR Workshop Proceedings, vol. 1771, pp. 68–71, 2016.

[37] A. Nugroho, J. Visser, and T. Kuipers, “An empirical model of
technical debt and interest,” in Proceedings - International Conference
on Software Engineering, (New York, New York, USA), pp. 1–8,
ACM Press, 2011.

[38] S. Morasca and G. Russo, “An empirical study of software produc-
tivity,” Proceedings - IEEE Computer Society’s International Computer
Software and Applications Conference, pp. 317–322, 2001.

[39] B. Kitchenham and E. Mendes, “Software productivity measure-
ment using multiple size measures,” IEEE Transactions on Software
Engineering, vol. 30, pp. 1023–1035, dec 2004.

[40] F. Arcelli Fontana and M. Zanoni, “Code smell severity classifica-
tion using machine learning techniques,” Knowledge-Based Systems,
vol. 128, pp. 43–58, jul 2017.

[41] F. Arcelli Fontana, V. Ferme, M. Zanoni, and R. Roveda, “Towards
a prioritization of code debt: A code smell Intensity Index,” in 2015
IEEE 7th International Workshop on Managing Technical Debt, MTD
2015 - Proceedings, pp. 16–24, Institute of Electrical and Electronics
Engineers Inc., nov 2015.

[42] S. A. Vidal, C. Marcos, and J. A. Dı́az-Pace, “An approach to prior-
itize code smells for refactoring,” Automated Software Engineering,
vol. 23, pp. 501–532, sep 2016.

[43] N. Tsantalis and A. Chatzigeorgiou, “Ranking refactoring sugges-
tions based on historical volatility,” Proceedings of the European Con-
ference on Software Maintenance and Reengineering, CSMR, pp. 25–34,
2011.

[44] E. P. Morozoff, “Using a line-of-code Metric to understand soft-
ware rework,” IEEE Software, vol. 27, pp. 72–77, jan 2010.

[45] T.-Y. Liu, “Learning to rank for information retrieval,” Foundations
and Trends in Information Retrieval, vol. 3, no. 3, pp. 225–331, 2009.

[46] L. Pruijt, C. Köppe, J. M. van der Werf, and S. Brinkkemper, “The
accuracy of dependency analysis in static architecture compliance
checking,” in Software - Practice and Experience, vol. 47, pp. 273–309,
John Wiley and Sons Ltd, feb 2017.

[47] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical Software
Engineering, vol. 14, no. 2, pp. 131–164, 2009.

[48] R. van Solingen, V. Basili, G. Caldiera, and H. D. Rombach, “Goal
Question Metric (GQM) Approach,” in Encyclopedia of Software
Engineering, 2002.

[49] H. A. David, The method of paired comparisons, vol. 12. London,
1963.

[50] M. Perez-Ortiz and R. K. Mantiuk, “A practical guide and software
for analysing pairwise comparison experiments,” 2017.

[51] A. Mikhailiuk, C. Wilmot, M. Perez-Ortiz, D. Yue, and R. Mantiuk,
“Active sampling for pairwise comparisons via approximate mes-
sage passing and information gain maximization,” in 2020 IEEE
International Conference on Pattern Recognition (ICPR), Jan 2021.

[52] E. Fix and J. L. Hodges, “Discriminatory analysis. nonparametric
discrimination: Consistency properties,” International Statistical Re-
view/Revue Internationale de Statistique, vol. 57, no. 3, pp. 238–247,
1989.

[53] R. Herbrich, T. Minka, and T. Graepel, “TrueskillTM: A bayesian
skill rating system,” in Proceedings of the 19th International Confer-
ence on Neural Information Processing Systems, NIPS’06, (Cambridge,
MA, USA), p. 569–576, MIT Press, 2006.

https://dx.doi.org/10.6084/m9.figshare.19823323
https://dx.doi.org/10.6084/m9.figshare.19823323

27

[54] J. Wienss, M. Stein, and R. Ewald, “Evaluating Simulation Soft-
ware Components with Player Rating Systems,” 2013.

[55] L. A. Meyerovich and A. Rabkin, “How not to survey developers
and repositories: Experiences analyzing language adoption,” in
SPLASH 2012: PLATEAU 2012 - Proceedings of the 2012 ACM
4th Annual Workshop on Evaluation and Usability of Programming
Languages and Tools, pp. 7–16, 2012.

[56] J. L. Fleiss, “Measuring nominal scale agreement among many
raters.,” Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[57] D. Sas, P. Avgeriou, I. Pigazzini, and F. Arcelli Fontana, “On the
relation between architectural smells and source code changes,”
Journal of Software: Evolution and Process, vol. 34, no. 1, 2021.

[58] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye,
and T.-Y. Liu, “Lightgbm: A highly efficient gradient boosting
decision tree,” in Advances in Neural Information Processing Systems
(I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates,
Inc., 2017.

[59] M. Stone, “Cross-validatory choice and assessment of statistical
predictions,” Journal of the royal statistical society: Series B (Method-
ological), vol. 36, no. 2, pp. 111–133, 1974.

[60] X. Wang, C. Li, N. Golbandi, M. Bendersky, and M. Najork,
“The lambdaloss framework for ranking metric optimization,” in
Proceedings of the 27th ACM international conference on information
and knowledge management, pp. 1313–1322, 2018.

[61] M. Soliman, A. Rekaby Salama, M. Galster, O. Zimmermann, and
M. Riebisch, “Improving the search for architecture knowledge in
online developer communities,” in 2018 IEEE International Confer-
ence on Software Architecture (ICSA), pp. 186–18609, 2018.

[62] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying Software
Engineers: Data Collection Techniques for Software Field Studies,”
Empirical Software Engineering 2005 10:3, vol. 10, pp. 311–341, sep
2005.

[63] J. Tan, D. Feitosa, and P. Avgeriou, “Do practitioners intentionally
self-fix technical debt and why?,” in 2021 IEEE International Con-
ference on Software Maintenance and Evolution (ICSME), pp. 251–262,
2021.

[64] E. d. S. Maldonado, R. Abdalkareem, E. Shihab, and A. Serebrenik,
“An empirical study on the removal of self-admitted technical
debt,” in 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 238–248, IEEE, 2017.

[65] F. Zampetti, G. Fucci, A. Serebrenik, M. D. Penta, A. S. aserebrenik,
and tuenl Massimiliano Di Penta, “Self-admitted technical debt
practices: a comparison between industry and open-source,” Em-
pirical Software Engineering, vol. 26, p. 22, 2021.

[66] L. A. Palinkas, S. M. Horwitz, C. A. Green, J. P. Wisdom, N. Duan,
and K. Hoagwood, “Purposeful sampling for qualitative data col-
lection and analysis in mixed method implementation research,”
Administration and policy in mental health, vol. 42, p. 533, sep 2015.

[67] B. G. Glaser and A. L. Strauss, Discovery of grounded theory: Strate-
gies for qualitative research. Routledge, 2017.

[68] H. Boeije, “A purposeful approach to the constant comparative
method in the analysis of qualitative interviews,” Quality & Quan-
tity, vol. 36, pp. 391–409, 2002.

[69] B. G. Glaser, A. L. Strauss, and E. Strutzel, “The discovery of
grounded theory; strategies for qualitative research,” Nursing re-
search, vol. 17, no. 4, p. 364, 1968.

[70] S. Mathison, “Constant comparative method,” Encyclopedia of eval-
uation, vol. 1, p. 0, 2005.

[71] T. Sharma, “ Designite - A Software Design Quality Assessment
Tool,” May 2016.

[72] S. Bruch, “An alternative cross entropy loss for learning-to-rank,”
in Proceedings of the Web Conference 2021, pp. 118–126, 2021.

[73] M. Robillard, R. Walker, and T. Zimmermann, “Recommendation
systems for software engineering,” IEEE Software, vol. 27, pp. 80–
86, jul 2010.

[74] H.-J. Happel and W. Maalej, “Potentials and challenges of rec-
ommendation systems for software development,” in Proceedings
of the 2008 International Workshop on Recommendation Systems for
Software Engineering, RSSE ’08, (New York, NY, USA), p. 11–15,
Association for Computing Machinery, 2008.

[75] F. Palma, H. Farzin, Y.-G. Guéhéneuc, and N. Moha, “Recommen-
dation system for design patterns in software development: An
dpr overview,” in 2012 Third International Workshop on Recommen-
dation Systems for Software Engineering (RSSE), pp. 1–5, 2012.

[76] J. Di Rocco, D. Di Ruscio, C. Di Sipio, P. T. Nguyen, and R. Rubei,
“Development of recommendation systems for software engineer-

ing: the CROSSMINER experience,” Empirical Software Engineering,
vol. 26, no. 4, 2021.

[77] D. Sas and P. Avgeriou, “Quality attribute trade-offs in the embed-
ded systems industry: an exploratory case study,” Software Quality
Journal, vol. 28, pp. 505–534, jun 2020.

[78] P. Brereton, B. Kitchenham, D. Budgen, and Z. Li, “Using a
protocol template for case study planning,” in Proceedings of the
12th international conference on Evaluation and Assessment in Software
Engineering, no. 2006, p. 8, 2008.

[79] J. Lefever, Y. Cai, H. Cervantes, R. Kazman, and H. Fang, “On
the lack of consensus among technical debt detection tools,”
in Proceedings - International Conference on Software Engineering,
pp. 121–130, IEEE Computer Society, may 2021.

[80] G. Samarthyam, G. Suryanarayana, and T. Sharma, “Refactoring
for software architecture smells,” in Proceedings of the 1st Interna-
tional Workshop on Software Refactoring - IWoR 2016, (New York,
New York, USA), pp. 1–4, ACM Press, 2016.

[81] A. Martini, F. A. Fontana, A. Biaggi, and R. Roveda, “Identi-
fying and Prioritizing Architectural Debt Through Architectural
Smells: A Case Study in a Large Software Company,” pp. 320–335,
Springer, Cham, sep 2018.

[82] R. Terra, L. F. Miranda, M. T. Valente, and R. S. Bigonha, “Qualitas.
class corpus: A compiled version of the qualitas corpus,” ACM
SIGSOFT Software Engineering Notes, vol. 38, no. 5, pp. 1–4, 2013.

[83] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble, “The qualitas corpus: A curated collection
of java code for empirical studies,” in 2010 Asia Pacific Software
Engineering Conference, pp. 336–345, IEEE, 2010.

[84] W. Wu, Y. Cai, R. Kazman, R. Mo, Z. Liu, R. Chen, Y. Ge, W. Liu,
and J. Zhang, “Software architecture measurement—Experiences
from a multinational company,” in Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 11048 LNCS, pp. 303–319,
Springer Verlag, 2018.

[85] A. Martini, E. Sikander, and N. Madlani, “A semi-automated
framework for the identification and estimation of Architectural
Technical Debt: A comparative case-study on the modularization
of a software component,” Information and Software Technology,
vol. 93, pp. 264–279, jan 2018.

[86] R. Verdecchia, P. Lago, I. Malavolta, and I. Ozkaya, “ATDx: Build-
ing an architectural technical debt index,” tech. rep., 2020.

[87] R. Verdecchia, I. Malavolta, P. Lago, and I. Ozkaya, “Empirical
evaluation of an architectural technical debt index in the context
of the apache and onap ecosystems,” PeerJ Computer Science, vol. 8,
p. e833, 2022.

[88] A. Mayr, R. Plosch, and C. Korner, “A benchmarking-based model
for technical debt calculation,” in Proceedings - International Confer-
ence on Quality Software, pp. 305–314, IEEE Computer Society, nov
2014.

	Introduction
	Architectural smells
	Definition and implications
	Arcan
	Smell characteristics

	The approach
	Indexes and cost estimates
	Definition
	Defining severity
	Defining extent

	Calculation of the index
	Calculating severity
	Calculating extent
	Summary definition

	Case study design
	Goal and research questions
	Overview of the case study
	RQ1: Model engineering & verification
	Dataset creation
	Training strategy & evaluation metric

	RQ2: Model validation
	Cases, subjects and units of analysis
	Data collection
	Data analysis

	Descriptive statistics of ATDI
	RQ1 results
	RQ1.1: ML model accuracy
	RQ1.2: The contribution of smell characteristics to predictions

	RQ2 results
	Perception of the ATDI estimations (RQ2.1 & RQ2.2)
	Overview
	Example opinions of the participants

	Feedback on the overall approach (RQ2.3)

	Discussion
	Threats to validity
	Related work
	Approaches estimating architectural debt principal
	Approaches estimating other types of technical debt principal

	Conclusion and future work
	References

