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Abstract

Technical debt (TD) is a term that refers to a collection of design and implementation
constructs that are not sustainable in the long term but meet the needs of the
stakeholders in the short term. The presence of TD reduces the ability of software
developers and architects to easily comprehend, evolve, and maintain a software
system. Eventually, an excessive amount of TD may result in the software project’s
failure due to the excessive costs to keep maintaining it.

Over the years, researchers have refined the definition of TD and identified the
different forms that TD can manifest in. The main distinction between these forms
is based on the type of artefact and level of abstraction that TD affects. Architectural
TD (ATD) is a type of TD that, as the name suggests, represents the TD that concerns
the architecture of a system.

Architectural smells are a notoriously detrimental form of ATD that refer to
violations of well known design principles that result in undesired dependencies,
overblown size, and excessive coupling. Architectural smells have a negative influ-
ence on the maintainability and evolvability of a system, making it harder to apply
changes and add new functionality. Researchers have identified, described, and
categorised several types of architectural smells over the past years. Subsequently,
several research tools were born to automatically detect such smells starting from
the source artefacts of a system.

From the practitioners’ point of view, in order to properly be able to manage the
technical debt generated by architectural smells, identification alone is not enough.
To properly address the threat posed by architectural smells to the maintainability
of a system, practitioners require support for the prioritisation, quantification,
repayment, and monitoring activities as well. Unfortunately, the literature on the
topic is incomplete, and the tool support for these specific activities is lacking.



The main focus of this thesis is to improve the support provided to prac-
titioners that need to manage architectural smells. In particular, it focuses on
providing support for practitioners that need to quantify the amount of TD genera-
ted by each architectural smell, monitor the trend of the TD over time, and identify
the prioritisation strategies available to better repay the TD incurred.

There exist several types of architectural smells, therefore, to narrow down the
scope of the investigation, we decide to focus on the four types that are the most
prominent in the literature: Cyclic Dependency (CD), Hublike Dependency (HL),
Unstable Dependency (UD), and God Component (GC).

To improve the support of architectural smells management, we first opted
to analyse the evolution of individual architectural smell instances in long-lived,
open-source systems by mining their software repositories. This allowed us to
investigate prioritisation opportunities based on the history of architectural smells.
The results show how different smell types differ in multiple aspects, such as their
growth rate, the importance of the affected elements over time in the dependency
network of the system, and the time each instance affects the system. Based on these
differences, we extrapolated that the refactoring of HL smells should be prioritised
over CD smells and that many CD instances should have a low priority as they are
likely to be organically removed in the upcoming releases.

These findings however are based on mining software repositories, thus they
can only tell half the story. To investigate the other half, we decided to ask 21
software practitioners their opinion on architectural smells and what smells they
think are more disruptive for the maintainability of a system. The findings show
that practitioners think of certain smells as more impactful than others. One above
all is the GC smell, that is perceived more detrimental than others, although the
opinion on the HL smell was quite similar.

From talking to practitioners, we also learned that they struggle to keep track
of architectural smells, how they are introduced, and whether multiple instances
overlap. This motivated us to further investigate how architectural smells are
introduced, and to broaden the scope, also how they co-occur, and evolve over
time in an industrial context. We set up an industrial case study to investigate
these aspects in the context of a large multinational company that works in C/C++,
and verify whether the findings of the previous studies (that were all based on Java
systems) apply to this context as well. The results show that CD smells, although
they are not very persistent within the system, are precursors to other smell types.
Therefore, CD instances can be used as a red flag that notifies practitioners that a
component might present a more severe architectural smell soon. Indeed, 94% of
HL smells, were also part of a cycle.



As part of the same investigation, we also elicited the opinion of software
engineers and architects, who mentioned that the most problematic aspect of archi-
tectural smells are change ripple effects, that are unpredictable. This motivated us
to investigate the relation between architectural smells and source code changes.
After analysing over 30 open-source Java systems, we ran a series of statistical tests
to determine whether source code changes were more frequent, and larger in size,
in components that were affected by smells than in non-affected components. The
findings show that this is indeed the case, and that all four architectural smells
correlate with higher frequency of change of the affected part. Interestingly, after
talking to practitioners in the previous study we expected UD to be the smell with
the highest correlation with changes. This turned out, however, not to be the case
as we observed over 10% higher change rate for the HL smell than for the UD
smell. This means that prioritising the refactoring of HL instances over the other
smell types is a more advantageous approach for practitioners.

The answers collected up until this point provided valuable insights on how
architectural smells are perceived by practitioners, how they get introduced, how
they co-occur, and how they correlate with the changes done in the system. These
results allowed us to extrapolate valuable information on what the best strategies
are to prioritise smell instances and what makes one instance more severe than the
other. Therefore, using the acquired knowledge, we created a machine learning
model that ranks architectural smells based on their severity which performs rather
well (97% of instances are ranked above a less severe smell). This model makes
it easier for practitioners to prioritise architectural smells, especially in very large
systems where hundreds of instances can be detected. Additionally, using this
model, we designed an approach to quantify the amount of technical debt generated
by the architectural smells detected in a system. The validation of the model shows
that in 71% of the cases, practitioners agreed that the estimations provided were
representative of the effort necessary to refactor the smell.

Finally, we also learned from practitioners that TD prioritisation (and conse-
quently its repayment) is influenced, not only by other TD items, but also by other
quality attributes (e.g. availability), thus forcing practitioners to sacrifice main-
tainability constantly. We proceeded to investigate this aspect and talked to 21
practitioners and learned that practitioners often prioritise run-time qualities over
design-time qualities, and do so mostly implicitly, due to lack of monitoring tools.





Samenvatting

Technical Debt (Technische schuld-TD) is een term die een verzameling ontwerp-
en implementatie constructies beschrijft die ongeschikt zijn voor de lange termijn,
maar aan de behoeftes van stakeholders voldoen op de korte termijn. De aanwe-
zigheid van TD maakt het moeilijker voor software developers en architecten om
software systemen te begrijpen, aan te passen en te onderhouden. Uiteindelijk kan
een te grote hoeveelheid TD er zelfs toe leiden dan een project mislukt door te hoge
onderhoudskosten.

Door de jaren heen hebben onderzoekers de definitie van TD verfijnd en hebben
ze verschillende verschijningsvormen van TD gedentificeerd. Het belangrijkste
onderscheid tussen die vormen zit in het type artefact en het abstractieniveau dat
bepaalde TD benvloedt. Architectural Technical Debt (ATD) is het type TD dat
betrekking heeft op de architectuur van een systeem.

Architectural smells zijn een opvallend schadelijke vorm van ATD. Het zijn
overtredingen van bekende ontwerpprincipes die resulteren in ongewenste afhan-
kelijkheden, overmatige grootte, en overmatige coupling. Architectural smells
hebben een negatieve invloed op de onderhoudbaarheid en de ontwikkelmoge-
lijkheden van een systeem wat het ingewikkelder maakt om veranderingen door
te voeren en nieuwe functionaliteit toe te voegen. Onderzoekers hebben over de
jaren heen meerdere vormen van architectural smells gedentificeerd, beschreven en
gecategoriseerd. Hierop volgend zijn er onderzoeksapplicaties gemaakt die deze
smells automatisch op kunnen sporen in de bronartefacten van een systeem.

Vanuit een praktisch oogpunt is identificatie niet genoeg om technical debt die
door architectural smells gegenereerd wordt in bedwang te houden. Om het risico
dat architectural smells vormen voor de onderhoudbaarheid van een systeem goed
aan te kaarten, hebben ontwikkelaars en architecten ook ondersteuning nodig bij



het prioriteren, quantificeren, aflossen, en monitoren van trends van architectural
smells. Helaas is de literatuur over dit onderwerp incompleet en schieten de
bestaande hulpapplicaties voor deze specifieke activiteiten tekort.

De nadruk van dit proefschrift ligt op het verbeteren van de ondersteuning voor
professionals die architectural smells beheersbaar moeten houden. In het bijzonder
focust het op ondersteuning verschaffen voor professionals die de hoeveelheid TD
veroorzaakt door iedere architectural smell moeten quantificeren, de trend van TD
over de tijd heen moeten monitoren, en beschikbare prioriteringsstrategin moeten
identificeren die het afbetalen van opgelopen TD makkelijker maken.

Er bestaan meerdere soorten architectural smells. Om de reikwijdte van het
werk in te perken, besluiten we ons te richten op de vier prominentste typen
uit de literatuur: Cyclic Dependency (CD), Hublike Dependency (HL), Unstable
Dependency (UD) en God Component (GC).

Om de ondersteuning van architectural smells management te verbeteren ko-
zen we allereerst om de evolutie van individuele architectural smells instanties
te analyseren in langlevende open-source systemen door hun software repository
te delven. Dit liet ons prioriteringsmogelijkheden onderzoeken op basis van de
levensloop van architectural smells. De resultaten laten zien hoe verscheidene
soorten smells op meerdere vlakken verschillen, waaronder hun groeisnelheid, het
belang van de geraakte elementen over de tijd heen in het afhankelijkheidsnetwerk
van het systeem, en de tijd dat iedere smell het systeem benvloedt. Op basis van
deze verschillen extrapoleren we dat het refactoren van HL smells geprioriteerd
moeten worden boven CD smells, en dat vele instanties van CD smells een lage
prioriteit zouden moeten krijgen, aangezien ze hoogstwaarschijnlijk op natuurlijke
wijze verwijderd worden in toekomstige releases.

Deze bevindingen zijn echter gebaseerd op het delven van software reposi-
tories, waardoor ze slechts de helft van het verhaal kunnen vertellen. Om de
andere helft te onderzoeken, besloten we om 21 software professionals te vragen
naar hun mening over architectural smells en van welke smells zij denken dat die
de onderhoudbaarheid van systemen het meest saboteren. De bevindingen laten
zien dat professionals denken dat bepaalde smells meer impact hebben dan an-
dere. Voornamelijk GC smells worden gezien als invloedrijk, alhoewel HL smells
vergelijkbaar werden beoordeeld.

Door het praten met professionals kwamen we er ook achter dat ze moeite
hebben met het in de gaten houden van architectural smells, hun oorsprong en
eventuele onderlinge overlap. Dit heeft ons ertoe aangezet om ook te onderzoeken
waar architectural smells vandaan komen, hoe vaak ze samen optreden, en hoe ze
evolueren in de context van het bedrijfsleven. We hebben een case study opgezet



om deze aspecten te onderzoeken, in de context van een groot internationaal be-
drijf dat werkt in C/C++, en om te bevestigen dat onze eerdere bevindingen (die
gebaseerd waren op Java systemen) ook hier van toepassing zijn. De resultaten
laten zien dat CD smells, ook al zijn ze redelijk vergankelijk binnen het systeem,
voorspellers zijn van andere soorten smells. CD smell instanties kunnen dus gezien
worden als een rode vlag die professionals waarschuwt dat een component bin-
nenkort ergere architectural smells zou kunnen gaan bevatten. Daarnaast bleken
94% van HL smells onderdeel te zijn van een cyclus.

Verder hebben we, als onderdeel van hetzelfde onderzoek, software engineers
en architecten bevraagd. Zij kaartten aan dat kettingsreacties van veranderin-
gen, die onvoorspelbaar zijn, het meest problematische aspect van architectural
smells zijn. Daarom hebben we ook onderzocht wat de relatie tussen architectu-
ral smells en code-aanpassingen is. Na het analyseren van 30 open-source Java
systemen hebben we meerdere statistische tests uitgevoerd om te bepalen of code-
aanpassingen vaker voorkwamen, en groter waren, in componenten die door een
architectural smell geraakt werden dan in componenten die niet geraakt werden
door architectural smells. Dit werd door de resultaten bevestigd. Alle vier de soor-
ten architectural smells correleren met meer aanpassingen in een erdoor geraakt
component. Interessant genoeg was dat, na het praten met software engineers en
architecten, we hadden verwacht dat UD smells de hoogste correlatie hadden met
veranderfrequentie. Dit bleek echter niet het geval. HL smells hadden namelijk een
10% hogere veranderfrequentie dan UD smells. Dit betekent dat het voordeliger
is voor professionals om voorrang te geven aan het refactoren van HL smells in
vergelijking met andere soorten smells.

De antwoorden die we tot nu toe verzameld hebben bieden waardevolle inzich-
ten in hoe architectural smells gezien worden door professionals, hoe ze onstaan,
wanneer ze samen voorkomen, en hoe ze correleren met veranderingen van het
systeem. Dankzij deze resultaten hebben we waardevolle informatie kunnen ex-
trapoleren over de beste prioriteringsstrategien en over wat een wat bepaalde
architectural smell instanties erger maakt dan andere. Gebaseerd op de verkregen
kennis hebben we een machine learning model gemaakt dat architectural smells
sorteert gebaseerd op ergheid. Dit model functioneert vrij goed: 97% van de smells
worden geordend boven een minder erge smell). Het stelt professionals in staat om
architectural smells te ordenen, vooral in gigantische systemen waar honderden
smell instanties te vinden zijn. Daarnaast hebben we, door gebruik te maken van
het machine learning model, een aanpak opgesteld om de hoeveelheid TD in te
schatten, die veroorzaakt is door gedetecteerde architectural smells in een systeem.
De validatie van het model wijst uit dat in 71% van de gevallen, professionals zich



konden vinden in de inschattingen , die waren afgegeven door het model over
hoeveel werk het refactoren van een smell zou zijn.

Tot slot hebben we geleerd dat professionals TD prioritering (en daaruit vol-
gend de aflossing ervan) niet alleen door TD instanties wordt beinvloed, maar ook
door andere kwaliteitsattributen (zoals beschikbaarheid). Dit dwingt professio-
nals constant om onderhoudbaarheid op te offeren. We hebben dit aspect verder
onderzocht en gepraat met 21 professionals. We hebben geleerd dat professionals
run-time kwaliteiten de voorkeur verlenen boven design-time kwaliteiten en dat
dit vaak onbewust gebeurd door het gebrek aan monitoring tools.
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Chapter 1

Introduction

A program that is used and that, as an implementation of its
specification, reflects some other reality, undergoes continuous
change or becomes progressively less useful. The change or decay
process continues until it is judged more cost effective to replace the
program with a recreated version.

— Meir Lehman

The opening quote of this chapter is the first of the five laws of software evolution
formulated by Lehman in the late 1970’s [Lehman, 1979]. The law refers to the

fact that all software is designed to operate in a specific environment and to satisfy
a specific set of requirements. However, every environment, and every require-
ment, is bound to change eventually, rendering the software obsolete. Therefore, a
constant need of adapting the software and keeping it relevant for its stakeholders
arises. This continuous adaptation is a relentless endeavor that requires an ever-
increasing amount of resources and, over time, destabilises the sustainability of a
software project.

A software project is sustainable if the project owner is capable of applying what-
ever valuable change they ought to make, in a timely fashion [Winters et al., 2020].
However, design decisions and implementation choices made early on in the
project’s lifetime inevitably affect the decisions we have to make in the present,
often making them harder. Over time, as the system grows old, our capability of
adapting the software to new requirements and changes in the environment grows
narrower, and making changes becomes more expensive. Eventually, the system
becomes unsustainable: it is poorly maintainable – i.e. it is hard to fix bugs – and
with limited capabilities to evolve – i.e. it is difficult to implement new functionality.
In other words, the second sentence of Lehman’s first law of software evolution
comes into play.

In 1992, Ward Cunningham cleverly adapted and reframed both of these
concepts (sustainability and Lehman’s first law) under the term technical debt
[Cunningham, 1992]. Since then, technical debt has gained a lot of traction among
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both practitioners and researchers alike, as it concerns a problem that (almost)
every non-trivial software system suffers from. Over the years, several stud-
ies have made great progress in identifying the causes and effects of technical
debt [Brown et al., 2010, Kruchten et al., 2012]. A comparable amount of effort was
also spent in designing and developing strategies and techniques to manage TD
[Li et al., 2015] in order to aid decision-makers. Similarly, several tools were devel-
oped to automatically measure TD using source code as input [Avgeriou et al., 2021],
or track it manually [Martini and Bosch, 2016].

Technical debt can materialise into various forms, ranging from source code vio-
lations [Letouzey, 2012, Curtis et al., 2012] and design-level flaws [Marinescu, 2012]
to sub-optimal decisions made at the architectural level [Ernst et al., 2015,
Yli-Huumo et al., 2014]. One form of such architectural decisions are architec-
tural smells (AS); they are defined as “commonly (although not always intentionally)
used architectural decisions that negatively impact system quality [Garcia et al., 2009]
and have gained a lot of attention from researchers over the past years
[Verdecchia et al., 2018]. AS are a particularly risky type of technical debt: they
involve architecture-level artefacts, so their impact is much larger and affects soft-
ware development in the long run.

The fundamental proposition of this thesis is that a better understanding of
AS will allow software practitioners to better manage technical debt, thus making
software maintainability and evolvability more cost-effective; this can, in turn, slow
down the decaying process mentioned by Lehman’s first law of software evolution
and defer the replacement of the software.

In the upcoming sections, we will introduce the concepts of technical debt and
architectural smells in further detail, as these are the leitmotif of this dissertation.
I will also decompose the research problem addressed in this thesis into multiple
research questions and explain the methodology used to answer them.

1.1 Technical Debt

1.1.1 History, definitions, and types

In 1992, Cunningham first introduced the concept of technical debt (TD)
[Cunningham, 1992]. The term was coined to indicate the necessity of releasing
software that, may work perfectly, but does not meet the criteria of software that is
sustainable in the long-term. Cunningham himself calls this an “unmasterable pro-
gram” that is “dangerous” unless the debt is repaid. Unfortunately, TD repayment is
not always feasible, as software practitioners have to work with limited time and
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budget, resulting in most of TD not being repaid [Digkas et al., 2018]. The time
spent on not-quite-right code counts as interest on that debt [Cunningham, 1992],
making software projects more expensive to maintain, whereas the not-quite-right
code itself is referred to as principal. Technical debt is a powerful metaphor that,
essentially, conveys the importance of sustainable software – and of Lehman’s first
law of software evolution – in terms that are easy to understand and communicate
to others.

A well-accepted definition of TD is the following: “in software-intensive systems,
technical debt is a collection of design or implementation constructs that are expedient
in the short term, but set up a technical context that can make future changes more
costly or impossible. Technical debt presents an actual or contingent liability whose im-
pact is limited to internal system qualities, primarily maintainability and evolvability”
[Avgeriou et al., 2016]. Hence, an organization can get into debt and use it as lever-
age to temporarily increase productivity, as long as it is aware of the debt and is
planning to repay it in due time. However, if the organization is not aware that it
is accruing TD, or does not repay it on time, the amount of interest may become
too high, causing the failure of the project due to the huge cost of implementing
changes.

Since the original conception of the metaphor by Cunningham, it has been
extended, engulfing several aspects of the software development process like ar-
chitecture, design, requirements, testing and documentation [Brown et al., 2010].
The current research literature has explored the concept in breadth and depth and
has proposed and analyzed multiple taxonomies and types of TD. A common way
of categorising TD is by the type of artefacts it affects. Using this approach, Li
et al. [Li et al., 2015] identified several different types of TD, namely Requirements
TD, Architectural TD, Design TD, Code TD, Test TD, Build TD, Documentation TD,
Infrastructure TD, and Versioning TD.

In this thesis, we will mostly focus on Architectural TD (ATD), the type of TD
that affects the architecture of a software. Examples of ATD are architectural viola-
tions (e.g. the implemented architecture is not compliant with a set of predefined
architectural rules), poor application of well-known architectural patterns, early
architectural decisions that had unexpected trade-offs, or architectural smells. As
aforementioned, this dissertation is centered around this last form of ATD, that is
architectural smells.
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1.1.2 Metaphor’s weaknesses and limitations

The use of the TD metaphor to describe software issues has received some criticism
from the research community too. One of the major shortcomings of the metaphor,
according to Schmid [Schmid, 2013], is the lack of a standard unit of measurement
and the difficulty to measure it because of the fuzzy boundaries of the different
TD components. Moreover, still according to Schmid [Schmid, 2013], not all TD is
effective TD, but it can also be potential TD, since it is not sure if there will be any
interest to be paid on that debt. This may be the case when some specific code will
never have to be modified again, hence no interest will ever be paid on such code;
as if it had no debt. Schmid also argues that the more detailed the effect of TD taken
into account, the higher its estimation gets: adding up individual contributions to
TD will result in counting the same underlying cost multiple times, leading to an
exaggerated value of TD [Schmid, 2013].

Other studies point out that the metaphor may encourage the detrimental be-
haviour of introducing debt thinking that a faster delivery can be achieved, without
any drawbacks. This is favoured by the fact that, in some cases, the people who
take the debt are not necessarily the same who pay it back [Allman, 2012].

1.2 Architectural smells

The term architectural smell (AS) was initially introduced by Lippert and Roock in
2006 [Lippert and Roock, 2006] to refer to violations of recognised design principles
(such as the ones defined by Martin [Martin et al., 2018]) that result in undesired
dependencies, overblown size, and excessive coupling [Garcia et al., 2009]. Al-
ternatively, architectural smells can be seen as error-prone or change-prone design
spots that hinder software maintainability at an architectural level [Mo et al., 2015].
It is important to note, however, that architectural smells are an indication that some-
thing may be problematic, but they do not necessarily result in problems.

This definition of architectural smells may sound very similar to the definition
of code smells provided by Kent Beck1. However, there is a clear distinction between
the two: architectural smells involve multiple classes, packages, architectural lay-
ers, or even sub-systems2 [Lippert and Roock, 2006], whereas code smells (CS) arise
at line of code, method, or class level [Fowler and Beck, 2002]. This means that ar-
chitectural smells, contrary to code smells, require large refactorings in order to be
removed from a system [Lippert and Roock, 2006]. Therefore, given the different

1Read https://wiki.c2.com/?CodeSmell for more info.
2From hereafter collectively referred to as elements.

https://wiki.c2.com/?CodeSmell
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scope and granularity, architectural smells and code smells are considered two dif-
ferent categories [Sharma et al., 2020]. This difference between the two categories
of smells is also supported by empirical evidence [Arcelli Fontana et al., 2019b].

Architectural smells can be of different types, with each type having its own
definition and implications for the maintainability and evolvability of the affected
elements [Azadi et al., 2019]. An architectural smell type can have multiple in-
stances affecting a system, with each instance having a different severity (more on
this in Section 2.3). An example of an architectural smell type is Cyclic Dependency,
which arises when a set of elements (e.g. classes, or packages) depend on each
other in a cycle.

The architectural smell types that are of interest to this PhD project are Cyclic
Dependency (CD), Hublike Dependency (HL), God Component (GC), and Unstable De-
pendency (UD). In Section 1.4.1 we elaborate on the reasons why we opted to focus
on these four types of AS. The definitions of each AS type will be given in Section
2.3.

1.3 The project SDK4ED and the Arcan tool

This PhD project was conducted in the context of the SDK4ED project, a project
funded by the European Union under the Horizon 2020 programme.

The vision of SDK4ED was to minimize the cost, the development time and the
complexity of low-energy software development projects, by providing tools for
automatic optimisation of multiple quality requirements, such as Technical debt,
Energy efficiency, Dependability (i.e. Reliability, Availability, and Security) and
Performance. One of the topics on which the project has innovated is researching
and developing tools to identify the trade-offs between runtime and design-time
software quality attributes at multiple levels of abstractions (code, design, and
architecture). In this regard, our study investigates specifically the interaction
between Technical debt (i.e. Maintainability and Evolvability) and Reliability,
which map to design-time and runtime quality attributes, respectively. Further
details on the project are available on its website3.

As part of the SDK4ED project, I also contributed to the open-source version of
Arcan, a tool to automatically detect AS in a system, by adding support for Java
source code, support for Git to do evolution analyses, and the detection of the God
Component smell. Arcanwill be fully introduced in Section 2.3.2.

3Browse https://sdk4ed.eu/.

https://sdk4ed.eu/
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1.4 Research design

1.4.1 Problem statement

In this dissertation, we address the problems that practitioners face when attempt-
ing to make changes to their systems in the presence of AS. We also argue that
by providing better support to target AS as part of TD management, we can help
practitioners to make changes more effectively and efficiently. To better explain the
problem, let us quickly look at the key activities of TD management [Li et al., 2015].
Note that we only mention the five most important and most studied activities
[Li et al., 2015], and focus specifically on AS (out of all TD types). These five activ-
ities are: (1) identify what elements in the system are affected by AS and the type
of the smells; (2) quantify the impact of each smell on the development activities
(both maintenance and evolution); (3) prioritise the smells in order to determine
the urgency to refactor; (4) repay the debt by refactoring smells according to the
prioritisation strategy adopted; and finally (5) regularly monitor the evolution of
TD and smells over time.

The current research landscape contains plenty of studies that focus on the first
activity of TD management for architectural smells – i.e. identification – whereas the
work done on the other activities is not as mature. Consequently, practitioners have
the means to identify the AS affecting a system, but there is limited understanding,
and most importantly very little tool support, for the remaining activities.

This situation stems from the fact that early research work on architec-
tural smells (rightfully) focused on identifying new types of smells, the-
oretically defining them, proposing detection rules, and finally describing
their impact on software maintenance from a theoretical, and then empiri-
cal, point of view [Lippert and Roock, 2006, Garcia et al., 2009, Mo et al., 2015,
Le et al., 2016, Arcelli Fontana et al., 2016]. Subsequently, tools for automatic de-
tection of AS were proposed, by both academia and industry [Avgeriou et al., 2021,
Khomyakov et al., 2020], and AS detection became a more feasible option for many
practitioners that could not afford to do a manual assessment. However, the rest
of the activities, from quantification through monitoring, are not really supported
in practice due to: a) the scarcity of research on these activities; b) the limited
availability of the few research tools that focus on those specific activities; and c)
the difficulty to use such tools [Khomyakov et al., 2020]. In the best case scenario,
this leaves practitioners to rely on intuition and assumptions instead of data and
well-established practices; in the worst case scenario, they do not consider AS man-
agement at all. In the long run, both are likely to cause exceedingly high costs in
order to apply any changes, thus diminishing the long-term sustainability of the
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system [Winters et al., 2020]. Eventually, it becomes more convenient to rewrite
the whole project [Lehman, 1979], or rely on a third party solution; but in some
cases, neither of these options may be feasible, leading to software ‘bankruptcy’
[Ampatzoglou et al., 2015].

This problem is summarised by the following statement:

The detection of architectural smells alone is not sufficient for practitioners
to take informed TD management decisions. Practitioners need to know the
amount of TD each instance amounts to, what the available prioritisation
strategies are, and the trend of the TD incurred over time. This information
can help them better implement TD repayment.

To further scope down the problem, we considered the fact that dozens of
architectural smells have been reported in books and scientific literature, and
it would be infeasible to address all of them. Thus, we decided to focus our
attention only on the four architectural smells (CD, HL, GC, UD – see Section
2.3) that are the most prominent in the literature [Azadi et al., 2019]; two of them
are also well known in the industry [Lippert and Roock, 2006, Martin et al., 2018].
Moreover, the literature also provides manually-validated, open-source tools
that we can use to detect these smells. In particular, we relied on Arcan
[Arcelli Fontana et al., 2016, Arcelli Fontana et al., 2017, Martini et al., 2018a], and
through the work in this dissertation, we actively contributed to improving the
tool.

1.4.2 Design science as research methodology

The research project that this dissertation is based on, adopts the design science
framework, as developed by Wieringa [Wieringa, 2014] and depicted in Figure 1.1.
Design science concerns the design and investigation of artefacts (e.g. a software
component, a method, a service, an organisation, etc.) in context [Wieringa, 2014].
Design refers to allowing the design of an artefact that improves a problem context,
namely, that solves a design problem. Investigation refers to allowing to answer
knowledge questions about the artefact in context.

Design problems call for a change in the real world; in contrast, knowledge
questions ask for knowledge about the real world. The distinction between design
problems and knowledge questions is often confusing, as design problems can be
formulated to look like knowledge questions. Figure 1.1 can help us distinguish
these: if the question asks about a solution to a problem, then it is a design problem;
if it seeks knowledge about the world, then it is a knowledge question.
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Figure 1.1: The framework for design science proposed by Wieringa
[Wieringa, 2014].

A concrete example of design science is Software Engineering itself
[Wieringa, 2014]. Software Engineering is a design science that seeks to under-
stand and solve the problems of creating and maintaining software to achieve the
stakeholders’ goals.

A concrete example of a design problem is: design an approach to measure technical
debt principal based on architectural smells. A concrete example of a knowledge
question is: how accurate is such an approach?

Design science is an iterative process where a researcher analyses a design
problem, identifies a solution, evaluates the solution, and, if the solution is not
satisfactory, they start over. The analysis of the design problem and its evaluation
are referred to as design cycle. Iterations through the design cycle may uncover
aspects of the original design problem that were initially unknown. The evaluation
process also allows for additional design problems or knowledge questions to
emerge.

These characteristics make the design science framework suitable for describing
long-term research such as PhD projects. Indeed, a PhD project starts with an initial
design problem, which can be decomposed into new, smaller design problems and
knowledge questions. By answering the knowledge questions, the researcher can
identify, with the new knowledge acquired, a solution to the design problems
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previously identified, which in turn might uncover new design problems and
knowledge questions. The cycle repeats until a design solution is found for the
original problem.

1.4.3 Problem decomposition

This section elaborates on how the research project presented in this thesis is
framed according to the design science framework. Figure 1.2 decomposes the
problem statement introduced in Section 1.4.1 into design problems and knowledge
questions. The different colors and arrows are to be read as follows: light grey
boxes refer to design problems; yellow boxes refer to knowledge questions; thin
arrows represent decomposition; whereas thick arrows represent sequence. In the
remainder of this section, we will use the term research question (RQ) to refer to both
design problems and knowledge questions. Research questions are numbered to
easily refer to them, and, with the exception of RQ1, are decomposed into multiple
sub-RQs that are labelled with letters.

The problem statement (see Figure 1.2) argues that practitioners cannot take
informed decisions by relying on the detection of AS instances alone. The smells
detected also need to be quantified in terms of TD, prioritised, monitored and paid
back in order for AS management to be effective. Without support for these activ-
ities, the practitioners’ ability to manage architectural TD is significantly limited,
ultimately affecting the sustainability of the system.

As a first step towards addressing the stated problem, we decided to investigate
how AS evolve in long-lived software systems, starting with open-source systems.
Thus we formulated RQ1: “How do AS evolve in open-source systems?” Answering
RQ1 would allow to address the stated problem in two ways. First, obtaining an
understanding of AS evolution can help researchers formulate general rules for
prioritising AS based on their historical evolution. Second, a better understanding
of the evolution of a smell can help design a better approach to quantify the amount
of TD incurred. Studying the evolution of AS entails studying two aspects: the
evolution of the individual AS instances (RQ1b) and the persistence of AS instances
within the system (RQ1c). This study required analysing 524 releases belonging to
15 open-source projects. The tool Arcanwas used to detect the architectural smells
and a custom tool was designed and developed to track them from one release to
the next (RQ1a).

One of the findings of RQ1 is that some smells may be the result of intentional
design. The investigation of RQ1, being a purely quantitative analysis based on
the mining of software repositories, cannot provide any further insight on why
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Figure 1.2: The decomposition of the design problem tackled in this dissertation.
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practitioners intentionally introduce smells or whether they consider the conse-
quences of doing so on software maintenance and evolution. Moreover, since RQ1
focuses on open-source projects only, it is hard to extend the findings to an indus-
trial context. Therefore, we formulated RQ2: “How are AS perceived by industrial
practitioners?” The goal of RQ2 is two-fold: (1) understand the issues stemming
from the presence of AS and that affect maintenance and evolution (RQ2a); and (2)
explore how and why practitioners introduce and deal with AS (RQ2b). To answer
RQ2, we designed a case study and interviewed 21 practitioners from 3 companies
in Europe that work with both Java and C/C++. The findings of RQ2 are particu-
larly interesting for researchers as they can better understand the problems faced
by practitioners and design solutions accordingly.

The investigation of RQ2 has shown that practitioners are aware of the prob-
lems stemming from the presence of architectural smells but struggle to keep track
of their evolution and the dependencies between smells. To better understand
this aspect, we had to study the evolution of and dependencies between AS while
also collecting feedback from the architects and engineers that developed the com-
ponents affected by the smells. Thus, we formulated RQ3 “How do AS evolve in
industrial embedded systems?” This RQ focuses on the evolution of AS, similarly
with RQ1, but has a completely different focus: the introduction order (RQ3a)
and the co-occurrence (RQ3b) of smells, taking into account also the experiences
of practitioners (RQ3c). The context of the study also changes, as RQ3 focuses
on industrial systems written in C/C++ (rather than open-source Java systems)
belonging to a large multinational company. Answering RQ3 allows us to under-
stand if there exists any pattern that can predict the introduction of a smell given the
presence of another and what practitioners think about specific AS instances (and
their evolution). This kind of information can be used to improve prioritisation
decisions (e.g. address the component that is most likely to be affected next).

One of the main findings of RQ2 (that was also confirmed in RQ3) was that most
of the interviewed practitioners were concerned about the frequency of change in
affected components and the propagation of changes to other components due
to the presence of smells. Practitioners reported that several components that
were affected by smells necessitated frequent maintenance. To further study this
aspect, and ensure that their feedback was not just the result of confirmation
bias4, we formulated RQ4: “How do AS correlate to changes in the source code of the
system?” Answering this question can help in understanding if elements affected
by architectural smells have a higher chance of changing than elements that are

4Confirmation bias is the tendency to interpret, favor, or recall information in a way that supports
one’s prior beliefs or values.
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not affected by smells (RQ4a), as well as if there is a difference before and after
the introduction of the smell (RQ4b). Moreover, this question investigates if code
churn in affected components is bigger than in non-affected ones (RQ4c). These
three aspects can shed some light into the relation between AS and the amount
of interest paid by practitioners that decide to not repay the debt represented
by smells. Answering this RQ required investigating 27 open-source projects,
involving 360 years of total development and over 305 millions of lines of code.

Research questions from 1 through 4 focus on investigating the problem: they
are knowledge questions and answering them can support researchers in understand-
ing how smells evolve, how they are perceived by practitioners, how they relate
with changes in the source code of the system; ultimately, they allow us to un-
derstand how to prioritise, quantify, and monitor smells. In contrast, RQ5 is a
design problem focusing on the solution: “Design an approach to estimate the technical
debt principal generated by AS”. The output obtained from the previous RQs is used
in RQ5 to design a solution to quantify the amount of technical debt principal
generated by architectural smells. In particular, we ranked a set of architectural
smells instances based on the findings from previous RQs (and from the literature)
on the prioritisation and severity of architectural smells, and then trained a ma-
chine learning model that is able to rank (from most to least severe) individual
architectural smell instances based on their severity (RQ5a,b). Next, we designed
an approach based on the machine learning model that estimates the amount of
technical debt principal of each instance (RQ5c). Finally, we set up a case study to
validate our approach by interviewing 16 practitioners (from both the open-source
and industrial worlds) and gauge how far the output provided is a relevant and
meaningful estimate of the TD principal incurred by a smell (RQ5d).

During the validation of the solution in RQ5, we discovered an interesting phe-
nomenon: while practitioners understand and relate to the amount of TD principal,
they often have to tolerate the existence of TD, hence sacrificing maintainability, in
favor of other qualities. This means that TD management decisions are affected by
other qualities as well, and to better understand the implications of these trade-offs
we formulated RQ6: “How are trade-offs between quality attributes currently managed
in industry?” The focus of this question was to understand the view of practitioners
concerning design-time vs. run-time qualities (RQ6a), collect example of trade-offs
between qualities (RQ6b), and understand how practitioners envision a tool to
help them manage these trade-offs (RQ6c). The output of this research question
can help practitioners make better trade-off decisions regarding the repayment
of technical debt. We investigated this RQ by setting up a case study where we
performed both interviews and a focus group. In particular, we interviewed 14
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Table 1.1: Empirical methods used to answer the knowledge questions.

Code Knowledge Question
Empirical
Method

Data
Type

Described in

RQ1
How do AS evolve in open-source
systems?

Case study Quantitative Section 2.4

RQ2
How are AS perceived by indus-
trial practitioners?

Case study,
Grounded Theory

Qualitative Section 3.2

RQ3
How do AS evolve in industrial
embedded systems?

Case study,
Grounded Theory

Quantitative &
Qualitative

Section 4.4

RQ4
How do AS correlate to changes
in the source code of the system?

Case study Quantitative Section 5.3

RQ5b
How accurate and transparent is
the ranking of severity?

Experiment Quantitative Section 6.4

RQ5d
Is the principal estimated by the
approach relevant to software de-
velopers?

Case study,
Grounded Theory

Qualitative Section 6.4

RQ6
How are trade-offs between qual-
ity attributes currently managed
in industry?

Case study,
Grounded Theory

Qualitative Section 7.3

different practitioners and held a focus group with 7 participants.

1.4.4 Mapping empirical methods to the RQs

The previous section decomposed the problem statement into knowledge questions
and design problems. To answer each knowledge question we adopted a number
of different empirical methods. Table 1.1 lists the empirical methods that were used
to answer each knowledge question, as well as the corresponding sections in this
thesis elaborating on the respective study design.

Specifically, the empirical methods adopted in this PhD project are the follow-
ing:

Case study in software engineering is an empirical enquiry that investigates a
contemporary phenomenon within its real-life context [Yin, 2003]. In other
words, it is used to increase the knowledge and bring about change in the phe-
nomenon being studied [Runeson et al., 2012]. Case studies were originally
used primarily for exploratory purposes, but they can also be explanatory,
descriptive, and improving. The exploratory case study is the main research
method used in this dissertation.

Grounded theory is an exploratory research method used to generate theories,
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mainly from qualitative data. It is one of the most important methods in
the field of qualitative data analysis and it is used to increase the theoreti-
cal sensitivity of the researcher as the data analysis progresses. Grounded
theory was particularly useful in this PhD project as it allowed us to formu-
late new hypotheses and theories starting from the qualitative data collected
[Glaser et al., 1968]. It is important to mention that Grounded Theory is a
full research method describing several steps, including how data can be
collected; however, in this thesis, only the qualitative data analysis part of
Grounded Theory was used, namely the Constant Comparative Method ac-
cording to [Glaser and Strauss, 2017]).

Experiments allow to measure the effects of manipulating one variable on another
variable [Runeson et al., 2012]. For this reason, experiments are particularly
suitable for establishing cause-effect relationships. In this PhD project, the
experiment was used to determine the effects of architectural smell-related
variables on the accuracy of a severity prediction model.

1.4.5 Overview of this dissertation

The main body of this dissertation consists of six chapters (Chapters 2 - 7). All
chapters are based on papers published in peer-reviewed conferences and journals,
except for Chapter 6, which, at the moment of writing, is still under review in a
peer-reviewed journal.

The PhD student was the first author and main contributor in all studies. The
other authors were: (a) the supervisors; (b) a fellow PhD student from a different
research group (Ilaria Pigazzini), who contributed to two studies by helping with
data collection in one study, and both data collection and analysis in the other; (c) a
software architect (Umut Uyumaz) from one of the companies that we collaborated
with, who helped with the data collection.

Each chapter aims at answering one research question as presented in Section
1.4.3 and briefly summarised in the following paragraphs. Table 1.2 depicts where
each chapter was published and the chapter number. Finally, Chapter 8 concludes
the dissertation by outlining the main results obtained from each empirical study
and discusses future work opportunities.

Chapter 2 is based on a paper published in the 2019 International Confer-
ence of Software Maintenance and Evolution (ICSME)(Sas, Avgeriou, Arcelli)
[Sas et al., 2019]. In the paper, we investigate the evolution of architectural smells
in 14 open-source Java systems. In particular, we look at how their characteristics
(or properties) evolve over time, and how long smells persist within the system.
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Table 1.2: Outline of the studies of this dissertation.

Code Research Question Chapter
Published
to

RQ1 How do AS evolve in open-source systems? Chapter 2 ICSME’19

RQ2
How are AS perceived by industrial practition-
ers?

Chapter 3
IEEE Soft-
ware

RQ3
How do AS evolve in industrial embedded sys-
tems?

Chapter 4 EMSE

RQ4
How do AS correlate to changes in the source
code of the system?

Chapter 5 JSEP

RQ5
Design an approach to estimate the technical
debt principal generated by AS

Chapter 6
Journal (un-
der review)

RQ6
How are trade-offs between quality attributes
currently managed in industry?

Chapter 7 SQJ

Chapter 3 is based on a study published in the IEEE Software magazine (Sas,
Pigazzini, Avgeriou, and Arcelli 2020) [Sas et al., 2021]. This paper aims at un-
derstanding how practitioners perceive the impact of architectural smells on their
systems. The specific goal is to allow researchers to better understand the practical
maintenance issues faced by engineers when a system is affected by an architec-
tural smell. To do so, we interviewed 21 software practitioners from three different
European companies and summarised their opinions on the matter.

Chapter 4 is an article published in the Empirical Software Engineering journal
(EMSE) (Sas, Avgeriou, Uyumaz, 2022) [Sas et al., 2022]. This paper features an
empirical study where we analyse 9 C/C++ industrial projects, amounting to a
total of 20 millions lines of code, and 38 releases for each project. The goal of
the study is two-fold: (1) investigate the evolution of architectural smells in C/C++

industrial projects; and (2) understand the opinions of the engineers on the findings
of the first part.

Chapter 5 is based on an article published in the Journal of Software Evolution
and Process (JSEP) (Sas, Avgeriou, Pigazzini, Arcelli, 2022). This article investigates
the relation between architectural smells and source code changes. In particular,
we analysed 31 Java systems and over 3,900 commits in order to determine the
existence of a correlation between the presence of an architectural smell and a
higher change frequency than a non-affected component. We studied two different
aspects of source code change: frequency and size.

Chapter 6 is based on a paper that is currently under review in a peer-reviewed
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journal. In this paper, we aim at providing an approach to estimate the amount
of technical debt principal generated by an architectural smell. To do so, we
developed a sophisticated approach to train a machine learning model that predicts
the severity of an architectural smell, which is then used to estimate the principal.
To validate the approach, we interviewed 16 practitioners to understand whether
the estimations provided by our approach are reasonable estimations of the amount
of principal.

Chapter 7 is based on an article published in the Software Quality Journal
(SQJ) (Sas, Avgeriou, 2020). The paper investigates the quality attribute trade-offs
performed by practitioners in the embedded systems industry. Specifically, we
looked at the trade-offs between run-time qualities (e.g. Availability) and design-
time qualities (e.g. Maintainability). To carry out the study, we performed two
rounds of interviews and a focus group, with a total of 21 practitioners involved in
the study.
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Chapter 2

Investigating instability architectural smells
evolution: an exploratory case study

I’ve learned to always avoid saying “always”.

— Martin Fowler

Abstract

Architectural smells may substantially increase maintenance effort and thus
require extra attention for potential refactoring. While we currently understand
this concept and have identified different types of such smells, we have not yet
studied their evolution in depth. This is necessary to inform their prioritisation
and refactoring. This study analyses the evolution of individual architectural
smell instances over time, and the characteristics that define these instances.
Three different types of architectural smells are taken into consideration and
mined from a total of 524 versions across 14 different projects. The results show
how different smell types differ in multiple aspects, such as their growth rate,
the importance of the affected elements over time in the dependency network
of the system, and the time each instance affects the system. They also cast
valuable insights on what aspects are the most important to consider during
prioritisation and refactoring activities.

2.1 Introduction

In recent years, there has been increasing interest on the concept of architectural
smells (AS): issues in the architecture that often cause extra maintenance effort
[Lippert and Roock, 2006]. Several studies have explored this concept and iden-
tified different types of such smells [Lippert and Roock, 2006, Garcia et al., 2009,
Suryanarayana et al., 2014, Mo et al., 2015]. However, while the evolution of code
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smell instances has been extensively investigated, very few studies focus on the
evolution of architectural smells and do so only at a coarse-grained level (e.g. by
simply counting the number of smells in each version). There is also no work
tracking the individual smell instances along system evolution.

We need to study the evolution of AS in detail because AS are a different type
of “affliction” than code smells: they usually involve more elements than code
smells, they affect the system at a different scale, and they require more effort to be
refactored [Lippert and Roock, 2006]. At the same time, the long-term advantages
of this refactoring in terms of maintainability and changeability of the system are
higher. Thus, the current theoretical knowledge on code smells cannot be applied
to AS.

In this study, we propose an approach to study the evolution of AS detected
by an open-source tool named Arcan [Arcelli Fontana et al., 2017], by tracking in-
dividual smell instances and measuring the evolution of the properties of each
detected instance. We have detected almost 150,000 unique smell instances in over
500 versions across 14 open-source Java projects. We have performed four types of
analyses: a generic data mining analysis to have a better understanding of the data,
a trend analysis to understand the evolution of the smells over time, a correlation
analysis to identify possible correlations among the smell characteristics1 consid-
ered, and a survival analysis to document their probability to persist within the
system. The focus of this study is on the architectural smells known as instability
AS [Arcelli Fontana et al., 2016]; these are introduced in more depth in Section 2.3.

Our findings can enable practitioners and researchers to develop strategies for
optimal refactoring prioritisation of individual smell instances based on multiple
factors. For example, a Hublike dependency smell is a much better option for
refactoring than a Cyclic dependency, especially in terms of complexity, and future
and present maintenance effort. Additionally, Cyclic dependencies have a much
shorter lifetime on the average, making them less critical in general.

The remainder of this chapter is organised as follows: Section 2.2 discusses
similar work in the literature, Section 2.3 introduces the smells hereby considered,
Section 2.4 explains the methodology of this case study, Sections 2.5, 2.6, 2.7, and 2.8
report and discuss the results of the different analyses, Section 2.9 lists the threats
to the validity of this study and finally Section 2.10 concludes the chapter.

1See Section 2.3.4 for the definition of characteristics and the full list.
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2.2 Related work

We present related work concerning both architectural smells and code smells.
In the former case, Al-Mutawa et al. [Al-Mutawa et al., 2014] have investigated

the circular (or cyclic) dependencies’ shape in Java programs. They developed and
validated a methodology to detect and classify circular dependencies starting from
the bytecode of an application. Their findings, based on a case study performed on
the Qualitas Corpus [Tempero et al., 2010a] data set, suggest that the most common
shapes (see Figure 2.1) are tiny and multi-hub. Moreover, they also argue that
cycles among parents and children packages are less critical than cycles among
non-related packages, providing empirical evidence to back up their claims.

Another study that considers the history of architectural smells was published
by Roveda et al. [Roveda et al., 2018]. In their work, the authors try to estimate
the architectural debt index using architectural smells and track the evolution of
the index throughout a system’s history. The calculation uses partial historical
information of the AS identified by the Arcan tool in multiple versions. The major
shortcomings of Roveda et al.’s index are:

(i) the historical information used is limited to the size of the smell and only
considers the previous version,

(ii) the historical information is weighted equally for every smell type, and

(iii) it does not account for the magnitude of the variation, i.e. a decrease by only
one element halves the contribution of the smell to the overall index, whereas
an increase by only one doubles it.

Indeed, one of the goals of this work is also to provide theoretical background and
practical tools to improve such types of calculation.

Concerning code smells, there are several works on tracking smells throughout
a system’s history. In their work, Vaucher et al. [Vaucher et al., 2009] have focused
on the code smell God Class and its evolution in terms of the degree of “godliness”,
estimated using their previous approach based on Bayesian belief networks. The
authors analysed the trend of such a parameter for each God Class instance in the
history of two systems. Their findings suggest that the godliness of God classes
tends to remain constant in over 60% of the cases.

A different perspective on code smells evolution was introduced by Chatzi-
georgiou et al. [Chatzigeorgiou and Manakos, 2014], who analysed the survival
probability of four types of code smells. Their findings show that Long Methods
are the most persistent code smells in the two analysed systems.
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In a similar work, Peters et al. [Peters and Zaidman, 2012] have also analysed
the persistence of code smells in a system, though they have used a slightly less
elaborate technique to do so and on a slightly different set of smells. Their findings
show that Feature Envy methods are the least persistent type of smell (similarly
to the finds of Chatzigeorgiou et al.) and that Data Classes are, instead, the most
persistent ones.

2.3 Architectural smells

2.3.1 Definitions and implications

This section introduces the architectural smells (AS) considered by this dis-
sertation. The definition of these smells is provided by Arcelli et al.
[Arcelli Fontana et al., 2016] and briefly reported here.

Unstable dependency (UD) This smell represents a component that depends
upon a significant number of components that are less stable than itself.
The stability of a component is measured using Martin’s instability metric
[Martin et al., 2018], which measures the degree to which a component (e.g. a pack-
age) is susceptible to change based on the classes it depends upon and on the classes
depending on it. The smell thus arises when a component has a significant number
of components – the tool Arcan uses a 30% threshold [Arcelli Fontana et al., 2017]
– it depends upon with an instability value higher than its own. A UD smell is
detectable on Java package-like elements only (i.e. containers of classes, files, etc.).
A simplified example of UD is shown in Figure 2.2c.

The main problem caused by UD is that the probability to change the main
component grows higher as the number of unstable components it depends upon
grows accordingly. This increases the likelihood that the components that depend
upon it (not shown in Figure 2.2c for simplicity) change as well when it is changed
(ripple effect), thus inflating future maintenance efforts.

Hublike dependency (HL) This smell represents a component where the num-
ber of ingoing and outgoing dependencies is higher than the median in the system
and the absolute difference between these ingoing and outgoing dependencies
is less than a quarter of the total number of dependencies of the component
[Arcelli Fontana et al., 2016]. A hublike dependency can be detected both at the
package and at the class level.
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The implications of this smell for development activities are once again concern-
ing the probability of change and the ease of maintenance. Consider, for example,
the case represented in Figure 2.2b. Making a change to any of the components
that A depends upon may be very hard [Martin et al., 2018], even though there is
only one component depending on them. Additionally, the central component is
also overloaded with responsibility and has a high coupling. This structure is thus
not desirable, as it increases the potential effort necessary to make changes to all of
the elements involved in the smell.

Cyclic dependency (CD) This smell represents a cycle among a number of
components; there are several software design principles that suggest avoiding
creating such cycles [Lippert and Roock, 2006, Parnas, 1979, Stevens et al., 1974,
Martin et al., 2018]. Cycles may have different topological shapes. Al-Mutawa
et al. [Al-Mutawa et al., 2014] have identified 7 of them; the ones detected by
Arcan are shown in Figure 2.1 [Arcelli Fontana et al., 2017]. Usually, the circle
shape is intuitively perceived as the typical CD (i.e. see Figure 2.2a), but it is
certainly not the only possible type of CD. In fact, there is empirical evidence
[Al-Mutawa et al., 2014] that tiny and multi-hub shapes (two stars attached to-
gether that are missing some edges) are more common than one expects. More
complex shapes mean that the cycle has lower levels of coupling and higher levels
of cohesion among the elements creating the cycle. For example, a clique-shaped
cycle has the maximum amount of coupling possible with the components taking
part in the cycle, drastically reducing the maintainability of the affected part of the
system.

Besides affecting complexity, their presence also has an impact on compiling
(causing the recompilation of big parts of the system), testing (forcing to execute
unrelated parts of the system, increasing testing complexity), or deploying (forcing
developers to re-deploy unchanged components) [Lippert and Roock, 2006].

God component (GC) This smell represents a component (or package, in Java)
that is considerably larger in size (i.e. lines of code) than other components in
the system [Lippert and Roock, 2006] (see Figure 2.2d). Originally, GC was de-
fined using a fixed threshold on the lines of code, Arcan however uses a variable
threshold-detection approach based on the frequencies of the number of lines of
code of the other packages in the system [Arcelli Fontana et al., 2015b].

God components aggregate too many concerns together in a single artefact and
they are generally a sign that there is a missing opportunity for splitting up the
component into multiple sub-components. God components tend to become such
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Figure 2.1: Symmetric cycle shapes detected by Arcan and defined by Al Mutawa
et al. [Al-Mutawa et al., 2014].

over time, as a result of several little incremental changes that contribute to the
massive scale of the component, which ends up effectively implementing a lot of
the overall functionality of the system. Over time, the understandability of the
component deteriorates along with the reusability of the individual parts of the
component, because nobody wants to use a piece of software that is difficult to
understand [Lippert and Roock, 2006].

This smell is not part of this study, but it was hereby introduced to keep all the
definitions of smells used by the studies in this dissertation in one place.

2.3.2 The Arcan tool

Arcan parses Java, C, and C++ source code files to create a dependency graph
where files, components, classes and packages are all represented using different
nodes with different labels. Dependencies, and other relationships between nodes,
are represented using edges that connect the dependant to its dependencies with
an outgoing, labelled edge (e.g. if artefact A depends on artefact B, then the depen-
dency graph contains a directed edge connecting A to B.). The project’s structural
information contained in the dependency graph is then used to calculate several
software metrics (e.g. fan-in, fan-out, instability [Martin et al., 2018], etc.) and then
detect architectural smells by recognising their structure in the dependency graph.

Compared to other tools, Arcan uses only software metrics and structural
dependencies in order to detect architectural smells. This makes Arcan different
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(c) An example of UD affecting compo-
nent A. The components that A depends
on (Bs and Cs) are shown in the figure
too. Components B1 to B3 are less stable
than A and represent the majority of A’s
outgoing dependencies.
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(d) An example of GC affecting compo-
nent A. The diameter of A represents its
larger size in terms of lines of code w.r.t.
other components in the system (B and
C).

Figure 2.2: Illustration of the four architectural smell types considered in this work.

from tools such as DV8 [Mo et al., 2015] (a tool used by related work) which also
requires the use of change metrics. While this type of metrics definitely provide
important insights into the maintenance hotspots of the system, they also come
with the requirement of needing historical data in order to be used. This aspect is
of particular importance in our case as the version control system adopted by the
company we worked with did not provide such information.

Despite the different approaches to detect architectural smells, the two tools,
Arcan and DV8, have some overlap in the detected smells. Both tools detect cycles
among files and components and both detect hub structures (called Crossing by
DV8 and Hublike Dependency by Arcan), but DV8 also incorporates historical
information for the detection of the latter type of smell.
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2.3.3 Similarities and differences between code and architectural
smells

Distinguishing between code smells (CS) and AS may not always be easy as dif-
ferent authors have a different understanding of what constitutes one or the other.
In this section, we try to provide a brief explanation about both and clarify the
differences between these two concepts.

Code smell is a term first popularised by Kent Beck in the late 1990s2 and
then further defined by Martin Fowler and Kent Beck himself in the early 2000s
[Fowler and Beck, 2002]. A CS is a sign that the piece of code under inspection
requires some changes (i.e. a refactoring) in order to be considered of good quality
[Fowler and Beck, 2002]. In other words, code smells are symptoms of poor design
and implementation choices [Tufano et al., 2015].

The term architectural smell was first adopted by Lippert
[Lippert and Roock, 2006] in 2006 to describe a part of the system that re-
quired significant refactorings at the architecture level in order to meet the desired
quality standards. To be more specific, Lippert mentions that architectural smells,
contrary to code smells, require large refactorings in order to be removed from
the part of the system they affect and require longer than a day to be applied
[Lippert and Roock, 2006].

Both AS and CS manifest themselves in different forms that are commonly
referred to as different types. Some examples of CS types are Duplicated Code, Long
Method, and Large Class [Fowler and Beck, 2002].

Finally, it is important to mention that previous work provides empirical evi-
dence that the AS considered in this study and the most well-known code smells
are independent entities and that there is no correlation between the presence of AS
and CS [Arcelli Fontana et al., 2019b].

2.3.4 Architectural smell characteristics

An architectural smell characteristic is a property or attribute of an architectural
smell instance. An architectural smell instance is a concrete occurrence of a type
of architectural smell. For each architectural smell type, one can measure different
characteristics. We refer to the characteristics that can be measured for every type of
smell as smell-generic, whereas we refer to the characteristics that can only be mea-
sured for certain types of smells as smell-specific characteristics. The characteristics
considered in this work are reported in Table 2.1.

2Read https://wiki.c2.com/?CodeSmell for more info.

https://wiki.c2.com/?CodeSmell
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Table 2.1: The smell characteristics identified by this study. * indicates this study. †

marks characteristics not studied in this study as they are intended as future work.

Smell Character. Description Ref.

smell-generic

All

Age The number of versions affected by the smell. *
Overlap Ratio The ratio of the total number of components of a given smell

that also take part in another smell.
*

Centrality The importance of the components affected by the smell within
the system. Measured using the PageRank of the components
in the dependency graph.

(1)

Size The number of elements of the system affected by the smell. *
Number of
edges

The number of dependency edges among the components af-
fected by the smell.

*

smell-specific

CD

Shape The cycle shapes as shown in Figure 2.1. (2),
(3)

Average edge
weight

The number of dependencies (weight) between the compo-
nents affected by the smell. It can be indicative of the difficulty
of refactoring the cycle.

(4)

Number of
inheritance
edges

The number of edges in the smell that represent an inheritance
between components.

(5)

Affected de-
sign level

Whether the cycle is present only at architectural level (among
packages) or also at design level (among classes) too.

(3)

Parent
centrality†

The degree to which a package is at the centre of a cycle with
its children sub-packages.

(3)

UD
Instability gap The difference between the instability of the main component

and the average instability of the dependencies less stable than
the component itself.

(4)

Strength (or
DoUD (4))

The ratio between the number of dependencies that point to
less stable components and the total number of dependencies
of the class.

(4)

HL
Average in-
ternal path
length†

Only computed on package HL. The average length of the
paths between internal nodes with afferent dependencies and
internal nodes with efferent dependencies within the central
package. The shorter the length, the more the packages that
depend upon the main component and packages that are de-
pended upon by it are connected.

*

Affected
classes ratio†

Only computed on package HL. The ratio between the num-
ber of classes taking part in a dependency relationship with
afferent and efferent packages of the main component and the
total number of classes in the main component.

*,
(6)

(1)[Roveda et al., 2018]; (2)[Arcelli Fontana et al., 2016]; (3)[Al-Mutawa et al., 2014];
(4)[Arcelli Fontana et al., 2017]; (5)[Laval et al., 2012]; (6)[Abdeen et al., 2011]
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We decided to focus our analysis on this set of smell characteristics because they
are measurable dimensions for the different facets of smells that further quantify
the extent to which the smell affects the system; this can inform developers on how
to prioritize refactoring. Additionally, some of the selected characteristics were
developed, studied or discussed by other authors in previous studies, as reported
by the Ref. column in Table 2.1.

The smell-generic characteristic Overlap, Centrality, and Size are of interest be-
cause they are all metrics that are conceptually related to the complexity caused
by any instance of a smell in the system. Intuitively, all of them may hinder the
degree of understandability, extensibility, or generally of maintainability of the
components affected by a smell: the more elements a smell has (size), or the more
elements of a smell are also involved in other smells (overalp), or the more its ele-
ments are interacting with other important components of the system (centrality),
the harder it is to fully understand or to refactor the smell.

Age, on the other hand, allows us to track the evolution of the other characteris-
tics over time, identify periods where they are more impactful, or discern eventual
correlations between them.

The CD smell-specific characteristics Shape and Average edge weight are of in-
terest because they are directly related to the complexity of the smell. The more
complex the shape, and the more edges there are between the affected components,
the harder the smell is to refactor because more effort is required. The Affected design
level, similarly, is important because the cycles present at both package and class
level have an impact on two different levels at once. Finally, the Number of inheri-
tance edges characteristic is considered because inheritance edges are considered an
indicator of an intentional design choice [Laval et al., 2012], thus intentional cycles
that contain a high number of inheritance edges between the components may be
more interesting for a developer to inspect.

The UD smell-specific characteristic Instability gap and Strength are of interest
because they are used for the detection of the smell and thus can effectively measure
its criticality. The higher the instability gap, the higher the chance the component
affected by the smell is changed due to ripple effects [Martin et al., 2018]. Likewise,
the higher the strength, the higher the chance (because there are more possible
components that are prone to a change) a change occurs and propagates to the
affected component.

The HL smell-specific characteristics Affected classes ratio and Average internal
path length are of interest because they quantify the involvement of the internal
classes in the smell by answering the questions ‘How many classes belonging to
the affected package (out of all package classes) contribute to the smell?’ and
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‘How much efferent and afferent packages are actually connected?’, respectively.
Intuitively, if the average internal path length is low, it is easier for changes to
propagate through the components involved in the smell. And if the efferent and
afferent packages are poorly connected (i.e. few paths), the chance a change propa-
gates is small. In other words, these two characteristics measure the proneness of a
HL smell to propagate changes incoming from its dependencies to the components
depending upon it.

2.4 Case study design

The design of the case study follows the guidelines proposed by Runeson et al.
[Runeson et al., 2012] to conduct and report case studies. Furthermore, the protocol
used to conduct the study and keep track of the changes is based on the template
proposed by Brereton et al. [Brereton et al., 2008].

2.4.1 Goal and research questions

The objective of this study is to expand the current knowledge of architectural
smells evolution. Using the Goal-Question-Metric [van Solingen et al., 2002] ap-
proach, the objective formulation is:

Analyse the evolution of individual architectural smells instances throughout
the system’s history for the purpose of understanding them with respect to
their characteristics and lifespan from the point of view of software architects
in the context of open-source systems.

Each one of the research questions that further refine the goal of this study focuses
on a different aspect of their evolution: RQ1 studies the evolution trend of each
type of smell w.r.t their characteristics, whereas RQ2 studies the survivability (or
persistence) of each smell type. The two research questions (RQ1 and RQ2) are
answered by answering a number of sub-questions (e.g. RQ1a and b for the case
of RQ1).

RQ1 How does each type of architectural smell evolve throughout the system’s
history?

(a) How do the smell characteristics of each smell type (i.e. size, centrality,
etc.) evolve over time?

(b) Is there a correlation between smell characteristics of the same smell
type?
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This research question focuses on investigating the evolution of each type of archi-
tectural smell through their characteristics and identifying relations among them.
It can provide information for understanding the effects of each type of smell on
the system, which can then be used to define refactoring prioritisation rules based
on single instances of that type. Identifying relations is important to avoid using
the same information multiple times. This means that it is necessary to identify
eventual correlations among them so that we can determine if we can omit some
of the characteristics without losing essential information.

One example of the use of trend as indicator for extra maintenance effort could
be the trend of centrality, a smell-generic characteristic that measures the degree of
connectivity of the elements affected by a smell with the other system’s components:
the higher the values the more other components are in some way connected to it
and thus the more probable for a change to have ripple effects.

RQ2 How do the different types of smells compare against each other regarding
their lifespan?

(a) Which types of smells, CD, HL or UD, are more persistent (i.e. are less
common to be removed)?

(b) Do the same smell types at package and class level have a different
survival probability?

(c) Does the shape of a CD smell affect its lifetime?

The aim of this research question is to compare the different types of smells in terms
of their survivability. Answering this question could help to define prioritisation
rules at the level of smell type. For example, one could choose to first refactor the
types of smells that are more likely to persist longer within the system.

We decided to focus on survivability because it is a time-based measurable
dimension of architectural smells, affecting future maintenance: the longer an
AS affects a system, the longer the developers and architects will spend extra
maintenance effort on the affected components.

2.4.2 Case selection

In this study, we used a set of open-source systems known as the Qualitas Corpus
(QC) [Tempero et al., 2010a]. We decided to work with open-source systems (OSS)
for the following reasons: OSS are easy to retrieve and manipulate, the QC has a
big variety of different projects ready to be used, and it is easier to develop static



2.4. Case study design 29

Table 2.2: The projects from the Qualitas Corpus release 20130901e used in this
study. A total of 524 versions (both major and minor) were analysed.

Project # Versions First version Last version # Unique AS

Ant 23 1.1 1.8.4 1,211
Antlr 22 2.4.0 4 1,183
ArgoUML 16 0.16.1 0.34 3,886
Azureus 63 2.0.8.2 4.8.1.2 108,796
Freecol 32 0.3.0 0.10.3 13,259
Freemind 16 0.0.2 0.9.0 994
Hibernate 115 0.8.1 4.2.2 13,551
JGraph 38 5.4.4 5.11.0.1 249
JMeter 24 1.8.1 2.9 1,846
JStock 30 1.0.6 1.0.7c 927
Jung 23 1.0.0 2.0.1 238
JUnit 24 2 4.11 164
Lucene 35 1.3.0 4.3.0 1,126
Weka 63 3.0.1 3.7.9 2,164

analysis tools when there is the possibility to inspect the source code analysed. An
extension ot our analysis on industrial systems is described in Chapter 4.

The QC has more than 100 projects that can be potentially analysed. We required
that projects have more than 15 versions available so to ensure smells have enough
time to grow, evolve, and fade, thus limiting the number of candidate projects to 15.
We also removed EclipseSDK from our selection due to its size causing difficulties
during tracking. The demographics of the selected projects are shown in Table 2.2.

2.4.3 Tooling

To perform the study, we developed a toolchain that allows to mine architectural
smells from a series of precompiled Java systems, as illustrated in Figure 2.3. The
toolchain is composed of two parts: AS detection and AS tracking.
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Figure 2.3: Data collection process and tooling. The data of each individual project
was then merged in a single data set.

Architectural smell detection

To identify architectural smells we use Arcan3, a free Java tool for detecting archi-
tectural smells in a system. Arcan receives as input one, or multiple, JAR files of
a single version of a system and outputs a series of CSV files and a GraphML file.
The graph file is the dependency graph of the given system extended with nodes
denoting architectural smells. The same information as the graph file is contained
within multiple CSV files.

Architectural smell tracking

In order to perform the study, we needed to track the architectural smells for each
pair of consecutive versions of the system, i.e. from v1 to v2, from v2 to v3, and
so on. To this end, we developed a tool, ASTracker4, that performs the following
steps: it takes as input multiple versions of a system (the GraphML files produced
by Arcan) and maps every smell in each version to its closest successor in the next
version, calculates the smell characteristics, and returns the results as CSV and
GraphML files.

To perform the mapping of each smell to its successor we use a function J known
as Jaccard similarity index [Jaccard, 1912], defined as

J(A,B) =
|A ∩ B|
|A ∪ B|

3See https://gitlab.com/essere.lab.public/Arcan.
4See https://github.com/darius-sas/astracker to access the tool and the data used in this study.

https://gitlab.com/essere.lab.public/Arcan
https://github.com/darius-sas/astracker
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where A and B are the sets of the affected components in two consecutive versions.
The index simply measures the percentage of elements that are shared by the two
sets. The use of this methodology and of the Jaccard index are justified because
a smell is defined by the elements it affects: the similarity of the affected sets of
elements leads to identifying the successor of a smell.

The comparison among elements in the sets is made using the full name of
the classes/packages. The main advantage of this method is that it avoids name
conflicts; however, a renaming in any of the parent packages results in the inability
to track the smell in the next version. Thus, for every smell k in version v1 and for
every smell l in version v2, we compute jkl = J(a(k), a(l)) which is basically a matrix
where the rows are the smells from v1 and the columns are the smells from v2. The
function a returns the set of elements affected by a smell. The linking between
smells k and l is done using a greedy strategy: the highest jkl such that k and l
have not already been linked with another smell, is the next mapping k → l to be
created. The greedy strategy ensures that every smell has been linked with the
smell that is most similar to itself, which means formally that only one cell per row
and column from the matrix j is selected. This operation is repeated until there are
no more smells left to map or the similarity scores of the remaining ones do not
satisfy jkl ≥ θ, where θ is the similarity threshold defined as

θ =

0.67 for |a(k)| > 5

0.60 for |a(k)| ≤ 5

We selected a variable threshold in order to cover the big variance of the function
J when a(k) has a relatively small cardinality. To adjust the thresholds, we consulted
all the possible values of J in the case where the two inputs shared all of their
elements but only the size changed. Additionally, we also consulted all the possible
values for small input sets sharing a variable number of elements. The selection
of θ = 0.60 when |a(k)| ≤ 5 allows for a maximum difference of 3 elements with
a smell’s successor, allowing the algorithm to be more permissive for smells with
fewer elements. Likewise, a value of θ = 0.67 allows for a reasonable variation
when the size of an AS is bigger than 5.

The algorithm only maps smells of the same type, namely CD with CD, UD
with UD, and HL with HL.
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2.5 General results

This section introduces some general statistics and insights concerning the data we
have collected5.

2.5.1 Smell density

A good starting point in understanding the evolution of smells is to look at the
smell density (# of smells per component). As the smell density in a system gets
closer to one it means that, on the average, there is one smell for every component
in the system. Figure 2.4 shows the density of each smell type across the versions
of every system.

Remarkably, seven projects have a smell density for CD among packages that
is either higher or very close to 1 in most of their versions, meaning that it is
quite common for developers to create cycles among the packages of the systems,
thus increasing the complexity of the system. It is interesting though to note that
the density of CD among classes, in most of the systems, is more or less constant
throughout time despite the size of the systems growing (i.e. their ratio remains
mostly constant). In other words, CD smells at class level are constantly introduced
by developers as a by-product of the development activities as the system evolves.
This causes also the number of cycles among packages to increase (because some of
those cycles will be among classes from different packages), and since the number
of classes per package increases over time in most of the systems analysed the smell
density on packages is bound to increase as well. A similar pattern also emerges
for UD smells, which are also constantly introduced in the system and have a
growing trend. On the contrary, the number of HL smells stays mostly constant
and relatively low (less than 10) over time in all the systems analysed, which
is expected as a system has only few components that have a disproportionate
number of dependencies.

Takeaway
Dependencies across packages affected by CD smells become ever tighter as the system
ages, making it more difficult over time to reuse them seperately, without importing
the whole system. This is caused because the cycles among packages grow in number
at a higher rate than the number of packages itself.

5Supplemental material available at http://www.cs.rug.nl/search/uploads/Resources/supp-
material-as-evo-icsme19.zip.

http://www.cs.rug.nl/search/uploads/Resources/supp-material-as-evo-icsme19.zip
http://www.cs.rug.nl/search/uploads/Resources/supp-material-as-evo-icsme19.zip
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Figure 2.4: Number of smells in the system divided by total number of classes or
packages, depending on the type of the component affected.

2.5.2 Smell characteristics

In this section, we briefly cover some interesting findings on the characteristics
mentioned in Table 2.1. One noteworthy finding is the difference in size between
smells. HL smells, due to their definition, tend to be usually bigger than the
other types of smells, surpassing 100 elements in bigger systems, whereas UD
smells are the smallest ones, hardly surpassing 10 elements even in bigger systems.
However, CD and UD smells have higher overlap ratio in general, meaning that
trying to refactor a smell with high overlap will entail also dealing with a certain
number of other smells.

Concerning UD smells specifically, we note that their instability gap mostly
ranges between −0.1 and −0.3; since these values are relatively close to zero, we
argue that they are not very prominent and by slightly improving the instability
of few packages, the smell could be removed. However, the instability gap is
also decreasing over time for 50% of the UD smells detected (more details on this
analysis in Section 2.6), meaning they become more severe over time.

Finally, we also note that CD smells are mostly at the class level only6 (ranging
from 60% to 95%, depending on the project) or package level only (from 0 % to

6See ’Affected design level’ in Table 2.1 for more details.
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75%, depending on the project). A small percentage (less than 3%) affects class
and package level at the same time and an even smaller percentage (1-2%) switch
between levels over time (e.g. they go from class level only to both architectural
and class).

2.6 Trend analysis (RQ1a)

2.6.1 Methodology: dynamic time warping

Analysing the trend of all the characteristics of each smell instance detected in
the analysed systems was not a trivial problem to solve, due to its dimension-
ality (smell instances, time, characteristic). The approach adopted to solve the
aforementioned problem was signal classification: the values assumed by a certain
characteristic for a certain smell over time are considered as a signal, then they are
compared to a series of predefined signals and a label is assigned to each one of
them based on the distance from each template. We used dynamic time warping7

[Kruskal and Liberman, 1983] to warp the signal of each template and stretch it to
match the signal one desires to compare it with. This technique was previously
used by Vaucher et al. to classify the trend of God Classes [Vaucher et al., 2009].

Formally, we can model the problem as follows: for every smell characteristic
Ck of a certain smell k we consider the different values Ck

i as a signal S. We then
compute the following variables: h = max S; l = min S; and m = (h + l)/2. These
three values are then used to build the seven templates, named from a to g, as
shown in Figure 2.5. For example, temblate (b) is defined as b = (l,m, h). The
templates are re-adjusted for each signal classified. Finally, the signal is classified
by comparing the distance of the signal from each template, and selecting as a label
the template name of the closest signal template. Specific implementation details
can be inspected in the source code.

Despite the selected templates offering a good variety of possible signal shapes,
there may be some cases that are not described well enough by the current selection.
For example, signals that vary between two integer values (e.g. 6-7) multiple
times, would be classified by the model as a constant signal (i.e. template (a)).
Nonetheless, we deem that the approximation offered by the model when unusual
signal curves have to be classified is sufficient for the purpose of this chapter for
the following reasons:

• the templates selected represent simple and general cases, thus they simplify

7The implementation used for this analysis was provided by the R package dtw.
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Figure 2.5: Trend evolution classification templates. Figure adapted from the work
of Vaucher et al. [Vaucher et al., 2009].

interpretation and analysis;

• a signal is classified based on the distance between points from the template
and points from the signal itself after being warped, thus the classified signal
has at least an internal component that resembles the classification tag (i.e.
template) assigned.

2.6.2 Results

We performed the aforementioned analysis for all of the numeric characteristics
we have recorded. Hereby we report only the most interesting ones, as there is a
large number of data and results that could not realistically fit into this chapter.

Size Overall, the size of the smells stays constant throughout their evolution,
especially in the case of CD and UD. This is shown in Figure 2.6 where approx.
50% of the total CD and UD across all systems have a constant trend. Instead of
growing in size, CD smells tend to grow in number, spreading across the system
as new elements are added to the system’s dependency network (i.e. new classes,
packages, etc.). Nevertheless, there is a fair amount of smells among all the types
that exhibit an increasing trend of some kind (types B, C, D). Specifically, HL
smells tend to grow in nearly 65% (40% Sharp and 25% Gradual increase) of the
cases. Given its nature, having a hub that keeps getting bigger and bigger through
dependencies from more and more classes, or packages, is problematic: that part of
the system becomes more complex, it has a lower cohesion and a higher coupling,
thus hindering future maintenance activities on it. It is thus important to limit the
growth of such smells by redistributing the responsibility of the central component
affected by the smell to others.
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Number of Edges Contrary to size, the number of edges connecting the compo-
nents affected by a smell have a different trend: they tend to increase. Specifically,
as can be seen in Figure 2.6, each smell type exhibits an increasing trend in the
number of edges involved in the smell of at least 40% and up to 80%. Additionally,
the number of edges between the affected components grows faster than the num-
ber of components per se. Again, this is especially true in the case of HL smells,
making them the type of smell that grows faster among the smells studied in this
work. Hublike dependencies are thus an important source of extra maintenance
effort, and the number of edges among the affected components of an HL smell can
quantify this effort more precisely than the number of affected elements. Indeed,
this makes sense because an increasing number of edges between components also
increases the probability that a change propagates to adjacent components that de-
pend on the component subject to change (as described in Section 2.3.1). This fact
was also mentioned in a previous work on change proneness metrics of software
packages, where the number of method calls (and thus also dependencies) has been
used as a change proneness indicator [Arvanitou et al., 2015]. Additionally, Martin
also links dependencies with change proneness [Martin et al., 2018].

Centrality The centrality metric selected is PageRank [Roveda et al., 2018]. We
decided to measure the PageRank of a smell as the maximum PageRank value of
the affected components and then weight it against the number of elements in each
version. This weighting makes sense because as the system ages, also the number
of nodes in the graph used for the calculation of the PageRank increases, scaling
down its values, but maintaining the proportions, hence the weighted version
allows us to account for this phenomenon.

As one can observe in Figure 2.6, as the system and the smells age, the centrality
of the smells tends to increase in the vast majority of the cases, especially for CD
and HL. On the other hand, UD exhibit more or less the opposite trends.

The results indicate that the component with the highest PageRank (which is
very likely to be the central component) in HL smell tends to “move” to the centre of
the system as the system ages. A similar trend can be observed for CD smells too.
These results confirm a very important assumption for these two types of smells:
AS tend to move to more central parts of the system as they age. These central parts are
also the most important as they have many ingoing dependencies. Consequently,
increasingly more maintenance is required for the parts of a system that are affected
by CD and HL smells.

Unexpectedly, for UD one can observe the opposite since most of them exhibit
a decreasing trend (types E, F, and G).
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Takeaway
Hublike dependency smells are a better target for refactoring activities in terms of
reduction in complexity, future maintenance efforts, and ease of removal for refactoring
activities are likely to focus mostly on the central component, by moving functionality
elsewhere, rather than on several components as in the case of multiple CD smells.

2.7 Correlation analysis (RQ1b)

To identify related pairs of characteristics for each smell instance of the same type,
and for each pair of characteristics, we ran a Spearman correlation test to check
for eventual correlations. The test was selected because the data is not normally
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distributed and it is not possible to assume that there is any linear relationship
among all the characteristics neither. The test was performed on each smell instance
and only on the pairs of smell characteristics whose both standard deviations
were not equal to zero for that instance. The aggregate test results for all smells
were plotted using boxplots (only p ≤ .05). The plots are included in the online
supplemental material for space reasons.

The characteristics that present a correlation for the majority of the instances
detected are the following:

Num. of edges ∼ Overlap8 for smells of type HL and CD at package level. This
is expected because of the high smell density at package level (as shown in
RQ1a). UD, however, do not present such a correlation for these character-
istics; this is probably because they usually do not affect central parts of the
system, which are more likely to be affected by multiple smells.

Num. of edges ∼ Centrality for HL smells at class level. This was also expected
due to the definition of HL (i.e. a component with a lot of incoming and
outgoing dependencies, which increases PageRank by definition). CD at
class level also exhibit a correlation for these two characteristics, but a bit
weaker, probably because CD are more frequent among elements near the
center.

Num. of Edges ∼ Size strongly for all smells, which is expected.

Overlap ∼ Centrality only weakly. The most prominent correlation is for HL at
class level, but is once again expected.

Overlap ∼ Size for CD at class and package level, is also expected, as the bigger
the size, the more likely it is that the elements affected are also affected by
other smells. The correlations also exist for HL smells, though they are a bit
weaker.

Number of edges seems to be correlated with a number of characteristics in
multiple cases. Despite this result, it is hard to state that, based on this correlation,
one should ignore the other characteristics, as these correlations mostly refer to the
majority of the instances rather than being an absolute gauge of the general case. In
fact, the only pair of characteristics that one can state that are fully correlated for
all smell types, independently of the instance, are Size and Number of Edges. The
other correlations are either not valid for all of the smell types, or only a part of the
instances analysed show solid evidence of correlation.
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2.8 Survival analysis (RQ2a,b,c)

2.8.1 Methodology: the Kaplan-Meier estimator

The rate of survivability of an architectural smell within a system may dras-
tically vary depending on its type. To establish the rates and compare
them among the different projects and smell types, we employed a tech-
nique typically used in the biomedical sciences, in product reliability assess-
ment, and also employed to analyse code smell persistence in previous studies
[Chatzigeorgiou and Manakos, 2014]. Unlike simple descriptive statistics, such as
mean, density functions, and similar, survival analysis also takes into consideration
the possibility that a smell continues to affect the system even after the last version
included in the analysis. In the biomedical domain, this event is associated with
the patient surviving past the period of the analysis.

The survival analysis is accomplished using the Kaplan-Meier estimator
[Kaplan and Meier, 1958], a non-parametric statistic that estimates the survival
probability of a type of smell as the system evolves (new versions are released). The
statistic gives the probability that an individual patient (i.e. smell in our case), will
survive past a particular time t. At t = 0, the Kaplan-Meier estimator is equal to 1,
and as t goes to infinity, the estimator goes to 0. Also, the probability of surviving
past a certain point t is equal to the product of the observed survival rates until t.

2.8.2 Results

Figure 2.7 reports the results of the analysis, i.e. the survival probabilities (a) of
different smell types and (b) of different cycle shapes.

Survival probabilities of different smell types (RQ2a,b)

One pattern that emerges from Figure 2.7a is that CD smells fade much quicker
than the other types of smells in almost all of the systems and have a very small
probability to persist within the system for a long time. We conjecture that the
cycles that persist the most are the cycles among the fundamental components of
the system; these are very unlikely to change after the core development activities
for that part settle down and new functionalities attract the effort of developers.
Moreover, we also note that cycles only have a 50% chance to stay within the system
for more than 4-5 releases. Furthermore, cycles among classes persist a little longer
within the system than cycles among packages, probably because classes taking
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part in cycles at design level only might have a stronger coupling with each other
than packages.

Another pattern that emerges is that UD is the most persistent type of smell,
being the one with the highest survival probability in the long run. Its survival
probability is so high that in some systems it never falls below 50%, even when
there are a lot of versions such as in the case of Azureus. Moreover, it also decreases
at a much slower rate than the other types of smells, making it an ideal target for
refactoring to avoid extra maintenance effort in the long run.

HL smells are more or less in between the other two smell types. They exhibit
a similar decrease rate in survival probability as CD smells but eventually end up
surviving for more releases. However, this pattern does not hold for all the projects,
and in some cases, HL smells end up being removed within fewer versions than
CD. This trend holds true especially for HL at the class level, which tend to decay
much faster than HL at the package level. Thus, it is reasonable to state that HL at
package level can be prioritised over HL at class level as they have a higher chance
of requiring extra maintenance over time. In general, from this analysis one can
conclude that package level smells, such as UD and HL on packages, tend to last
a little bit longer than class level smells, implying that smells at the package level
are potentially more impactful on maintenance efforts than smells affecting classes
only.

Takeaway
The refactoring prioritisation should not focus on cyclic dependencies that were re-
cently introduced, as it is very likely that they will disappear within the next few releases
because they are less likely to influence the maintenance effort on the long term. Instead,
refactoring should first focus on either UD smells or HL smells among packages as they
exhibit higher persistence rates. This also confirms that most circular dependencies are
not critical [Al-Mutawa et al., 2014].

Survival probability of different CD shapes (RQ2c)

Concerning the different shapes of CD smells, Figure 2.7b shows how different
shapes persist within the system. The results show that the most pervasive shape
in most systems are tiny shapes. This makes sense as tiny shapes are composed
by only two elements and there might be multiple dependency edges between the
two elements; thus the probability of a tiny cycle to break is smaller than shapes
with multiple elements. Additionally, tiny cycles are easier to understand and may
also be intentionally designed as such.

On the other hand, the other, more complex, shapes are less resilient (i.e. they
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disappear faster than tincy cycles) and there is very little difference between dif-
ferent shape types, making it hard to formulate any solid proposition on their
survivability. In order for these complex shapes to persist, they must affect parts of
the system that have a solid conceptual connection; otherwise they do not persist
long within the system.

The cycles Arcan could not classify into definite shapes have a more consistent
trend and disappear quicker than all other shapes. A possible explanation could be
related to their nature: we conjecture that this type of cycle is mostly random and
caused by casual relationships among components that tend to connect multiple
uncomplete cycles into a single one, possibly overlapping with other cycles as well.
Thus these very volatile edges that interconnect multiple parts of a system have a
high chance of getting changed because they are individual edges, and if one of
these edges is removed, the whole cycle breaks. This is also evident from the clear
difference in survival probability between the unclassified shapes and the complex
shapes (circle, chain, clique, star).

Takeaway
We suggest that tiny shapes should not to be prioritised during refactoring even though
it is the most persistent one, as it may be the result of intentional design (false positives).
Refactoring activities, instead, should prioritise old cycles with complex shapes that are
more likely to affect important parts of the system, and thus that are more likely to incur
extra maintenance effort.

2.9 Threats to validity

We identified the possible threats to validity for this study and categorised them
using the classification proposed by Runseson et al. [Runeson et al., 2012]: construct
validity, external validity, and reliability. Internal validity was not considered as we
did not examine causal relations [Runeson et al., 2012].

Construct validity This aspect of validity reflects to what extent this study mea-
sures what it is claiming to be measuring [Runeson et al., 2012]. In this study,
we aim at measuring the evolution of architectural smells instances and under-
stand them depending on their type and different characteristics. We developed
a case study using a well-known protocol template [Brereton et al., 2008] that was
reviewed by the three authors and an external researcher in several iterations to
ensure that the data to be collected would indeed be relevant to the research ques-
tions.

A possible threat to construct validity is the correctness of the tracking algorithm
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that might be incorrect or not cover some special cases, such as the renaming of the
affected components. To mitigate this threat, we manually validated the tracking
results for one of the projects considered in this study (Antlr) and fixed any issues
we found during our inspections.

Another threat concerns the detection of the smells considered in this project
which depends on the implementation offered by Arcan. This is partially mit-
igated, as the Arcan tool has already been used and evaluated in a number of
studies [Arcelli Fontana et al., 2016, Biaggi et al., 2018].

Finally, the last threat we identified is the relatively long, and variable periods
of time in between the versions analysed for each project. This problem may have
caused the prevalence of ‘sharp’ classification in the trend analysis over the ‘grad-
ual’ ones. We mitigated this threat by limiting the importance we attribute to the
specific type of the trend and focusing mostly on its nature (i.e. increase/decrease)
and by also including projects with a strict release schedule (e.g. Hibernate).

External validity This aspect of validity reflects to what extent the results obtained
by this study are generalisable to similar contexts. The second one regards the
projects we used to collect the necessary data. These projects were all open-source
Java systems, Hence, it is not possible to generalise these results to industrial
projects or projects written in a different programming language. However, we
addressed this threat by adopting a collection of systems (the Qualitas Corpus)
specifically intended for scientific analyses and tried to include as many projects
and versions as possible in order to increase the sampling size of the population
analysed. Our findings can thus be generalised to other Java projects of similar size
and history that have an active open-source community backing the development
efforts.

Reliability Reliability is the aspect of validity focusing on the degree to which
the data and the analysis are dependent on the researcher performing them.

The data and the tools used in this study are freely available online to allow
other researchers to assess the rigour of the study or replicate the results using the
same data set or even on a different set of projects.

The reliability of the findings is guaranteed by the fact that all the intermediary
results were inspected by a second researcher during all the data analysis process.
The analysis was also performed using well-established techniques already used
in previous work for analysing similar artefacts (code smells) as well as also in
different fields (e.g. survival analysis, in the biomedical sciences field).
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2.10 Conclusions

This study has investigated the evolution of instability architectural smells in the
context of open-source systems with respect to their characteristics and persistence.
We presented multiple findings and practical implications useful both for practi-
tioners and researchers that can help them improving the strategies for reducing
long term maintenance efforts by managing architectural smells.

The tooling used in this chapter to mine architectural smells has been extended
to integrate with Git repositories, thus allowing us to link the current information
to code churn and investigate the effects of smells on change rates, as reported in
Chapter 5.

The findings of this chapter helped us understanding how architectural smells
evolve and allowed us to deduce a few general prioritisation rules for different
smell types. These rules, however, are based only on data mined from the software
repositories of open-source systems. To better understand the context of where
these rules can be applied, we are going to study, in the next chapter, the per-
ception of architectural smells in industrial practice through the eyes of software
practitioners.
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Figure 2.7: Survival probability p up until any time t. p = 0.50 is represented by
a vertical dashed line. Only a selection of systems is shown here for the sake of
readability. The full plot is available in the online supplemental material.
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Chapter 3

The perception of architectural smells in
industrial practice

In a room full of top software designers, if two agree on the same
thing, that’s a majority.

— Bill Curtis

Abstract

Architectural Technical Debt (ATD) is considered as the most significant type
of TD in industrial practice. In this study, we interview 21 software engineers
and architects to investigate a specific type of ATD, namely architectural smells
(AS). Our goal is to understand the phenomenon of AS better and support
practitioners to better manage it and researchers to offer relevant support. The
findings of this study provide insights on how practitioners perceive AS and
how they introduce them, the maintenance and evolution issues they experi-
enced and associated to the presence of AS, and what practices and tools they
adopt to manage AS.

3.1 Introduction

The metaphor of Technical Debt (TD) reflects the technical compromises that soft-
ware practitioners make in order to achieve a short-term advantage at the expense
of creating a technical context that increases complexity and cost in the long-term
[Avgeriou et al., 2016]. Technical debt can be incurred throughout the entire soft-
ware development process, so multiple types of TD can be identified (e.g. require-
ments, architecture, code) [Alves et al., 2016]. Architectural technical debt (ATD)
was found to be one of the most significant types of TD, as, typically, key archi-
tectural decisions are made very early in the software lifecycle and thus have a
stronger impact [Ernst et al., 2015].



46 3. The perception of architectural smells in industrial practice

One type of ATD are architectural smells (AS): all AS instances are ATD items
but not all ATD items are AS [Verdecchia et al., 2018]. AS are defined as “commonly
(although not always intentionally) used architectural decisions that negatively im-
pact system quality” [Garcia et al., 2009]. AS manifest themselves in the system as
undesired dependencies, unbalanced distribution of responsibilities, excessive cou-
pling between components as well as in many other forms that break one or more
software design principles and good practices, ultimately affecting maintainability
and evolvability [Lippert and Roock, 2006]. We note that the presence of AS does
not always inevitably indicate that there is a problem, but it points to places in the
system’s architecture that should be further analysed [Lippert and Roock, 2006].

Despite the recent attention from the research community on the topic
[Verdecchia et al., 2018], few studies investigated how practitioners understand
AS and experience the associated maintainability issues in the real world
[Arcelli Fontana et al., 2020]. To address this shortcoming, we interviewed 21 soft-
ware developers and architects to collect their opinions and experiences from in-
dustrial practice. Specifically, we focus on how practitioners perceive AS, what
maintenance and evolution issues they associate with AS, how they introduce
them and how they deal with them in terms of adopted practices and tools. The
goal is to enrich the understanding of researchers on AS and inform practitioners
on how AS manifest themselves in a real-world scenario, ultimately supporting
better AS management.

While there exist several types of AS in the literature, we limited our scope to the
four types of AS that are detected by most of the available tools [Azadi et al., 2019]
and that are among the most important types of AS currently described in the
literature [Arcelli Fontana et al., 2020]:

Cyclic Dependency (CD) : is defined as a set of software artefacts (e.g. classes,
files, packages, components, etc.) that depend upon each other, thus creating
a circle. CD breaks the Acyclic Dependencies Principle [Martin et al., 2018]
and increases coupling.

Hublike Dependency (HL) : is defined as an artifact that has an excessive number
of incoming and outgoing dependencies, thus creating a hub. HL breaks the
modularity of the system as the hub is overloaded with responsibilities and
exacerbates the dependency structure of the system.

Unstable Dependency (UD) : is defined as a package (or any similar construct
- e.g. a component) that has too many dependencies to packages that are
less stable than itself, thus increasing its reasons to change. A package is
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said to be stable if it is resilient to changes in neighbouring packages. UD
breaks the Stable Dependency Principle (Depend in the direction of stability)
[Martin et al., 2018] because the affected package depends on packages less
stable than itself.

God Component (GC) : is defined as a package (or component) whose size (mea-
sured using LOC) is noticeably bigger than the other components in the
system [Lippert and Roock, 2006]. GC breaks system modularity and aggre-
gates too many concerns into a single package.

More details concerning the smells can be found in Section 2.3.
It is important to note that the participants in our study were asked not to limit

themselves to these four smells only and were free to mention experiences related
to different types of AS.

3.2 Study Design

3.2.1 Research questions

We performed a case study to collect experiences from industry regarding three
research questions:

RQ1 How are AS perceived by practitioners? This research question allows us
to see what types of smells practitioners know about and deem to be im-
portant for their particular case and; in general, we are interested in their
thoughts about architectural smells. This knowledge can help researchers
better understand the point of view of professional architects and developers
on architectural smells. This can also help other practitioners, which can
understand the state of the industry concerning AS.

RQ2 What are the maintainability and evolvability issues experienced by practi-
tioners that relate to the presence of AS in the system? This research question
aims at finding common maintenance/evolution issues experienced by soft-
ware practitioners that are typical symptoms of the presence of architecture
smells in their systems. This knowledge can help other practitioners re-
late their own experience to the ones reported and help them consider more
closely a tool-backed ATD management strategy, based on architectural smell
analysis.
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RQ3 How do practitioners introduce and deal with AS? This research question
is a continuation of the previous one and aims at uncovering the common
practices and tools adopted to reduce the extra maintenance effort introduced
by the presence of smells. Answering this research question can provide a
list of tools and practices that can be used to manage architectural smells in
practice in order to reduce their technical debt. If tools and practices are not
used in practice, we may be able to derive requirements for such tools and
practices.

For practitioners, answering these questions can help them understand and relate to
issues experienced by other practitioners, obtain deeper knowledge about AS, and
learn about how to manage them. Researchers, on the other hand, can understand
better the real-world problems experienced by practitioners and how AS contribute
to TD exactly.

3.2.2 Data collection

We collected data by interviewing 21 practitioners from 3 companies in Europe op-
erating in two different domains (Embedded Systems and Enterprise Applications
Development) with three main programming languages (C, C++ and Java). The
first company provided 12 participants, the second 6 and the third 3.

To select the subjects that took part in the interviews we used convenience sam-
pling. After approaching the companies that showed interest in our study, we asked
the architects, managers, or team leaders, to recommend to us a number of their
colleagues that would agree to being interviewed. After receiving the list of can-
didates, we proceeded to send them emails explaining the goal of the study along
with a pager about AS and a consent letter informing them about the confidentiality
of the interview. The interview guide is available in Appendix A.

The practitioners’ background, as it can be seen from Table 3.1, varies from
a few years of activity (junior developers) up to 25 years of practice (architects).
The average size of their projects is about 50 Million Lines of Code (LOC) for the
first company, from 500,000 to 1,000,000 LOC for the second and from 250,000
to 750,000 LOC for the third (more details are reported in Table 3.2). Interviews
were semi-structured and each lasted approximately 30 minutes. We chose to use
interviews because they allow for follow-up questions and clarifications, ensuring
that participants have understood the questions.
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Table 3.1: Demographics of the participants to the interviews.

ID Company Position Experience (Years)

P1 A Product Architect 8
P2 A Design Engineer 4
P3 A Software Architect 14
P4 A Design Engineer 15
P5 A Design Engineer 8
P6 A Design Engineer 10
P7 A Software Architect 15
P8 A Software Architect 25
P9 A Software Architect 22
P10 A Software Architect 23
P11 A Design Engineer 3
P12 A Lead Design Engineer 20
P13 B Software Developer 6
P14 B Senior Software Developer 10
P15 B Software Developer 3
P16 B Software Developer 1
P17 B Software Architect 10
P18 B Software Developer 2
P19 C Software Architect 5
P20 C Senior Software Developer 16
P21 C Software Developer 5

3.3 Results

3.3.1 RQ1: perception of AS

Participants reported being the most familiar with GC among the four studied AS;
several practitioners reported personal experiences in managing this kind of smell.
GC is perceived as a common cause of maintenance issues as well as reduced
evolvability of the affected component, mainly as a result of the high level of
complexity that characterizes its instances. In particular, almost all practitioners,
except for two architects, had rather strong opinions on this AS and underlined its
importance vividly. The two architects, instead, expressed some skepticism when
discussing its importance and disregarded it as they saw no added technical value
in splitting a GC.

Opinions on CD were generally aligned, and most participants considered
CD as detrimental for maintainability, reliability, and testability. Concerns about
reliability (e.g. deadlocks) were mostly expressed by the participants working on
C/C++ projects, highlighting that even if some CD instances have not caused issues
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Table 3.2: Demographics of the companies (k: thousands; M: millions)

Company Domain Size Projects characteristics

A Production of Industrial
machines and develop-
ment of software to gov-
ern those machines

Global multinational
with 28k employees and
based in the Nether-
lands.

Size: 50M LOC; Architecture:
Layered; Main language: pro-
prietary C/C++

B Development of enter-
prise applications with
focus on the banking and
insurance domains.

Global multinational
with 33k employees and
based in France.

Size: from 0.5M to 1M
LOC; Architecture: client-
server app., microservices;
Main language: Java

C Development of mo-
bile and web applica-
tions specialized in open
banking and educational
platforms.

Small-sized enterprise
operating in Italy with
18 employees.

Size: from 250K to 750K
LOC; Architecture: client-
server app., mobile apps;
Main language: Java

yet, they pose a high risk for future undertakings. On the other hand, participants
working with Java perceived it as less detrimental than other smell types like GC.
This difference in perception is probably due to the different application domains
of the companies, and not only because of the differences between Java and C/C++.

We note that, typically, architectural smells are the symptom of a bigger, and
more profound, issue in the architecture [Lippert and Roock, 2006] that needs to
be studied case-by-case. However, in cases where CD affected reliability and
testability, their very presence was considered as the problem that developers were
trying to resolve. Opinions were much more polarized when the HL smell was
discussed. Some participants mentioned that: (1) it should not be considered a
problem because it could be a result of an intentional design decision; (2) it should
not be a cause of concern as long as it is understandable; and, (3) as one participant
expressed, it is easy to solve. However, other participants (and especially the ones
working with Java) mentioned that HL is very important to avoid because it is not
easy to manage and it hinders both maintainability and evolvability by making it
hard to understand how to insert new code in the presence of a HL.

Concerning UD, participants generally perceived it as a threat to both maintain-
ability and evolvability, highlighting their concerns about the change ripple effects
associated with UD and underlining the importance of avoiding dependencies to-
wards packages that constantly evolve. Nevertheless, one developer expressed
their doubts about the importance of this AS while few more outlined that they did
not fully understand it and gave no feedback about it. From these results, it ap-
pears that, while all AS are considered detrimental, they are perceived differently
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by practitioners depending on their past experiences, educational background, and
application domain: GC and CD are perceived as the most important ones, HL is
considered manageable, and UD is considered detrimental but not critical. It is
important also to take into account that UD is less visible than the other smells: one
cannot tell by looking at a package that it is less stable than another one without
employing dedicated tooling.

Finally, we observed the existence of a slight correlation between the experience
of interviewees and the type of concerns expressed about an AS. Junior participants
tended to be more concerned about the short-term problems (e.g. presence of CDs
and impact deployed system), while senior participants were keener on long-term
evolvability and team-related matters (e.g. new team members making changes to
a GC).

3.3.2 RQ2: impact on maintenance and evolution

The participants discussed plenty of anecdotes and experiences about maintenance
and evolution issues that they associated with the presence of AS. Almost all anec-
dotes about GC involve the difficulty of understanding the functionality provided
by the component, mainly caused by the excessive internal entanglement of files
(or classes), the excessive amount of functionality implemented, and the way func-
tionality is scattered across the component. The relationship between GC and code
duplications was also frequently discussed. Components affected by GC do not
provide fine-grained classes that can be easily reused inside or outside the compo-
nent, but large and entangled classes. Hence, when developers need to reuse an
existing functionality, they prefer to copy the entire class and adapt it for the new
purpose, instead of extracting a small, reusable functionality. On top of creating
duplicated code, this also further enlarges the existing GC.

The experiences about CD are rather diverse and range from dealing with dead-
locks and low throughput to unclear chain of command between components and
poor separation of concerns in general. Cycles were also reported as an intertwined
mess that is hard to understand; e.g. when there is a package that requests data
from another package which in turn requests it back from the initial package. These
problems resulted in a significant amount of effort required to be fixed or dealt with
along the way, and in some cases, they showed up only in production or at the
customer. Participants also mentioned problems that had a more widespread im-
pact; for example, a cycle prevented the creation of a microservice out of a subset
of packages, as all the packages in the cycle had to be included in the microservice
(the desired functionality could not be isolated).
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Concerning HL, practitioners associated it with two types of issues: (1) difficulty
of understanding the logic in the central component and (2) change ripple effects
propagating from the components that the central component depends upon to
the components depending on it, mentioning also a possible overlap with UD.
The former was usually associated with how the central component exposes its
functionality through its interface. The latter caused changes to unexpected parts
of the system that practitioners did not expect to relate to the initial change, during
activities such as bug fixing.

The maintenance issues that associated with UD the most were change ripple
effects. In several instances, practitioners reported that functional changes to a
certain component (or package) also required several files in other components
to change as well. As reported by two participants, the possibility of changes
propagating to other components increases the difficulty of making changes: prac-
titioners are forced to only make changes compatible with the other components
in order to avoid changing and recompiling those other components.

3.3.3 RQ3: introduction and management of AS

Participants reported their experiences in how they get to introduce an AS in the
system. Some participants admitted that it often happens by design; for instance,
concerning GC, the component or the file is intended to be large. Subsequently,
as reported by other interviewees, developers tend to underestimate the severity
of the introduced GC, while the incremental changes applied to it contribute in
making it even larger.

In other cases, AS are introduced inadvertently. For example, the participants
reported that a bad separation of concerns at design time or the wrong exploitation
of class inheritance can result in CD. Another participant mentioned that they used
to create a dedicated interface to hide unstable components behind it as a practice
to avoid the propagation of changes; however, this is precisely the description of a
UD smell, being misinterpreted as a good practice.

In many cases, introducing AS seems unavoidable and accepted as a necessary
evil. For example, one participant explained that in view of an imminent deadline,
they focus on developing the new feature and having a first structure of the code,
without caring about its maintainability.

Moving on to the management of AS, we asked the participants about their
experiences with AS refactoring. Most of them had experience with the refactoring
of GC, in particular the practice of splitting the component in smaller pieces by ap-
plying incremental changes or by detaching the smallest, easiest sub-components
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first. One interviewee managed to break a CD by re-modelling the involved de-
pendencies to follow a hierarchical structure; others reported creating replacement
interfaces and slowly migrating clients to them while refactoring the existing com-
ponents. In contrast, developers do not commonly refactor HL because of the
required effort; if they can, they tend to code around it without removing it when
developing new features, allowing it to persist. One interesting reason mentioned
for not refactoring AS is the absence of a comprehensive regression test suite.

Concerning practices which support the refactoring of AS, some participants
mentioned the usage of SonarQube to keep the code readable and maintainable;
this can ease the refactoring of AS since often the poor quality of the code makes
refactoring even more difficult and time-consuming. Another indicated pair pro-
gramming and the help of senior developers as valid support. However, not all the
interviewees reported the adoption of refactoring practices. Some even pointed out
that they avoid refactoring because their clients do not pay for refactoring time and
as long as the system has no visible problems in production, they do not intervene.

Finally, we also asked whether practitioners use tools to manage architectural
smells. SonarQube was mentioned by quite a few participants, but only once in
regard to an AS (i.e. to detect cycles). Besides that, practitioners do not rely on any
specific tool to manage AS. Nonetheless, participants did mention ideal features
that they would like to have in an ideal tool that manages AS. The features are
reported in Table 3.3, and we created a mind map to summarise the results of all
three RQs in Figure 3.1.

Table 3.3: Desired features of an ideal tool to manage AS with the reported fre-
quency in parentheses.

Classification Description

Detection Highlight the problem while I am writing the code (to save time) (2)
Automatically detect HL and CD (1)
Dive deep down the layers and show the actual causes of the smell (2)
Show the files that create the dependencies of a certain package (1)

Refactoring support Refactoring suggestions (4)
What-if analysis to remove cycles (1)
Show the data or call dependencies between artefacts (1)
Support to split GC by features (1)

Prioritization Filter the components to show (2)
Heatmap of smells in the system (1)
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Figure 3.1: Mind map summarising the perception, experiences, prevention, intro-
duction, and presence of architectural smells as described by the participants. In
parentheses we report the number of data points, and, if appropriate, the type of
associated AS.
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3.4 Discussion and implications

The presented results indicate that AS clearly help incurring ATD: they have a di-
rect, architecture-level impact on the maintainability and evolvability of the affected
parts. AS make changes harder to implement by increasing the effort required to
understand the implications of a change, making it easy to underestimate the ef-
fort necessary for the change, and hard to plan ahead. Practitioners are aware
and well-informed about good design practices, but they struggle following them
diligently, often prioritizing delivering a feature over good design. Fowler calls
this reckless and deliberate TD [Fowler, 2014], because practitioners understand
the long-term implications of their decisions but still decide to incur technical debt.
By doing so, practitioners are forced, sooner rather than later, to apply refactorings
before proceeding with the implementation of new features (as mentioned by the
participants) and pay a considerable amount of TD interest every time they need
to extend the system.

As emerged from the interviews, TD is also incurred inadvertently
[Fowler, 2014], either recklessly, because of poor knowledge about the design of
the parts affected by change (e.g. a component requesting a parameter that belongs
to itself from another component), or prudently, because the optimal design solu-
tion only becomes clear after implementing the chosen solution. The introduction
of technical debt through non-optimal solutions that is then detected as AS is not
automatically controlled, as we observed a lack of adoption of tooling dedicated to
manage AS - practitioners mostly focus on code TD.

At any rate, regardless of the how, incurring TD is inevitable and inherent to the
software development process, so practitioners must adopt practices that enable
its management. Similarly to any other type of TD items, the first step in man-
aging AS is detecting them. Azadi et al. provide a recent list of tools that detect
AS [Azadi et al., 2019] for practitioners to consider. Another, even more important
step is prevention. Practitioners should pay particular attention to how they create
internal dependencies as there is a fine balance between Changeability and num-
ber of dependencies per file: too many, and files become entangled, making the
system hard to modify and giving rise to GC and CD; too few, and the system is
also hard to modify, because fewer classes are reused (tree-like dependency graph
[Lippert and Roock, 2006]) resulting in multiple classes implementing similar func-
tionality and applying the same change to all of them is repetitive. Therefore, prac-
titioners should carefully balance how these dependencies are created by devising
clear architectural rules that prevent the creation of undesired dependencies that
end up generating AS.
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3.5 Conclusions

In this chapter we found that most practitioners consider smells a “necessary evil”,
that they sometime need to accept if they want to diligently meet the software
requirements. In order to better understand this aspect, we decided to study how
smells are exactly introduced within a system. In the following chapter, we set up
an empirical study to study precisely this aspect. Additionally, we also wanted
to better understand the evolution of smells from the perspective the software
practitioners that introduced and dealt with those smells.
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Chapter 4

The evolution and impact of architectural
smells – an industrial case study

Continuous attention to technical excellence and good design
enhances agility.

— Manifesto for Agile Software
Development

Abstract

Architectural smells (AS) are notorious for their long-term impact on the Main-
tainability and Evolvability of software systems. The majority of research work
has investigated this topic by mining software repositories of open-source Java
systems, making it hard to generalise and apply them to an industrial context
and other programming languages. To address this research gap, we conducted
an embedded multiple-case case study, in collaboration with a large industry
partner, to study how AS evolve in industrial embedded systems. We detect
and track AS in 9 C/C++ projects with over 30 releases for each project that
span over two years of development, with over 20 millions lines of code in the
last release only. In addition to these quantitative results, we also interview
12 among the developers and architects working on these projects, collecting
over six hours of qualitative data about the usefulness of AS analysis and the
issues they experienced while maintaining and evolving artefacts affected by
AS. Our quantitative findings show how individual smell instances evolve over
time, how long they typically survive within the system, how they overlap with
instances of other smell types, and finally what the introduction order of smell
types is when they overlap. Our qualitative findings, instead, provide insights
on the effects of AS on the long-term maintainability and evolvability of the
system, supported by several excerpts from our interviews. Practitioners also
mention what parts of the AS analysis actually provide actionable insights that
they can use to plan refactoring activities.
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4.1 Introduction

Architectural decisions have been established as one of the most important
factors affecting long-term maintenance and evolution of software systems
[Ernst et al., 2015]. Architectural smells (AS) are a specific type of such decisions;
they are defined by Garcia et al. as “commonly-used (although not always inten-
tional) architectural decisions that negatively impact system quality” [Garcia et al., 2009].
There are several research works that define the different types of architec-
tural smells (e.g. god components or cycles between components) and dis-
cuss their impact on maintainability and other qualities [Lippert and Roock, 2006,
Arcelli Fontana et al., 2016, Mo et al., 2015, Le et al., 2016, Garcia et al., 2009]. This
impact usually depends on the type of smell, but generally, an architectural smell
can impact maintenance activities of all kinds (corrective, perfective, etc.) by vio-
lating software design principles [Azadi et al., 2019]. For example, AS can hinder
the adaptation of a system to new requirements by increasing the coupling and
breaking the modularity of certain parts of the system [Azadi et al., 2019].

Despite the significant corpus of research available on the topic
[Verdecchia et al., 2018], most studies have a limited scope as they perform mainly
source code analyses on open-source systems written in Java. While these studies
certainly provide a valid and substantial contribution to the literature, there is in-
sufficient work on real-world industrial systems. Particularly, to the best of our
knowledge, there is no work on the impact of AS on maintainability in the em-
bedded systems (ES) industry, where languages like C, C++, and Python are used
much more than Java [TIOBE, 2021]1.

To address this shortcoming, this study investigates AS in an industrial setting
by analysing C/C++ projects and eliciting the opinion of software engineers and
architects. In particular, we worked with an industrial partner, ASML2, and studied
how AS evolve and impact Maintenance and Evolution [van Vliet, 2008] in two
steps. First, we studied the evolution of AS in one of ASML’s main software
product lines, comprised of several millions of lines of code, by examining: how
architectural smell instances evolve in terms of their characteristics (e.g. number of
affected elements, number of dependency edges among the affected elements, etc.),
how long they persist in the system, and how they overlap. Second, we showed the
architects, designers, and developers the results of our analysis and interviewed
them about the issues they experience while maintaining the artefacts affected by
architectural smells. This study design allowed us to cover the viewpoints of both

1See our replication package for the version at the moment of writing.
2Visit www.asml.com for more info.

www.asml.com
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the system (quantitative) and the engineers (qualitative).
The major findings of this study show that smells tend to grow larger over time,

affecting more and more artefacts, and that different smell types exhibit largely dif-
ferent survival rates, allowing practitioners to do a coarse-grained prioritisation of
the smells instances to refactor. Moreover, the results show that some artefacts are
affected by more than one smell at a time, increasing the effort required to maintain
them. Practitioners, on the other hand, recognise that the presence of smells cor-
relates with frequently changed components, increased change propagation, the
presence of severe bugs, the decay of the architecture, and general maintenance
issues.

The architectural smells considered in this study are Cyclic Dependency (CD),
Hub-Like Dependency (HL), Unstable Dependency (UD), and God Component
(GC) [Arcelli Fontana et al., 2016, Lippert and Roock, 2006, Sas et al., 2019]. We
opted to study these smells as they are some of the most prominent architec-
ture smells, and there already exists tools that support their automatic detection
[Arcelli Fontana et al., 2016, Arcelli Fontana et al., 2017].

The rest of the chapter is organised as follows: Section 4.2 provides an overview
on the architectural smells characteristics used in this study; Section 4.3 discusses
related work and compares it with this study; Section 4.4 provides a detailed
description of the study design; Sections 4.5, 4.6, 4.7, and 4.8 describe the data
analysis methodology and results for each research question; Section 4.9 provides
a discussion on the findings presented in the previous sections; Section 4.10 sum-
marises the implications of our findings for practitioners; Section 4.11 summarises
the identified threats to the validity and our mitigation strategy; finally, Section 4.12
concludes the chapter. Appendix B.1 reports the interview guide we used during
the interviews.

4.2 Background

In Chapter 2, we provide a definition for architectural smells (see Chapter 2.3) and
architectural smell characteristics (see Chapter 2.3.4).

4.2.1 Architectural smell characteristics

The characteristics considered in this study are listed in Table 4.1. We refer the
reader to Chapter 2.3.4 for a in-depth definition and explanation on why each
characteristic was selected to be studied.
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Table 4.1: The architectural smell characteristics analysed in this study.

Name Description

smell-generic

Age The number of versions the smell is present in.
Size The number of artefacts affected by the smell.
Centrality The importance of the artefacts affected by the smell within the de-

pendency network of the system. Measured using PageRank (from on
[Roveda et al., 2018]).

Number of edges The number of dependency edges among the affected artefacts.

CD smell-specific

Shape The shape of the cycle: tiny, circle, chain, star, clique (from
[Al-Mutawa et al., 2014]).

Affected design level Whether the cycle is present only among files or components or at both
levels (from [Al-Mutawa et al., 2014]).

UD smell-specific

Strength The ratio between the number of dependencies that point to less stable
components and the total number of dependencies of the class (from
[Arcelli Fontana et al., 2016]).

Instability gap Is the difference between the instability of the main component and the
average instability of the dependencies less stable than the component
itself (from [Arcelli Fontana et al., 2016]).

HL smell-specific

Affected ratio The ratio between the number of files creating the central component’s
incoming and outgoing dependencies and the total number of files in
the central component (based on [Abdeen et al., 2011]).

Afferent ratio The ratio between the number of files within the central component with
incoming dependencies from external components and the total number
of files within the central component (based on [Abdeen et al., 2011]).

Efferent ratio The ratio between the number files within the central component with
outgoing dependencies to external components and the total number
of components the central component (based on [Abdeen et al., 2011]).

GC smell-specific

LOC Density The total number of lines of code present in this component divided by
the number of files in the component (i.e. its Size).
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4.3 Related Work

This section summarises similar studies from the literature regarding architecture
smells and (to a lesser extent) code smells.

In our previous study in Chapter 2, we investigated the evolution of AS in open-
source Java systems by adopting two techniques from other domains (that were
previously applied in software engineering): Dynamic Time Warping and Survival
Analysis. Specifically, we examined how a set of AS characteristics evolve and how
long AS survive within the system. Our findings showed that Cyclic dependencies
have a low survival rate (just a few weeks for more than 50% of instances), and
Hublike Dependencies are much more complex than cycles. In general, this means
that Hublike Dependencies are a much better option for refactoring than cycles.
The present study is different from the work presented in Chapter 2 because it
focuses on industrial C/C++ embedded systems and it investigates the opinions of
the architects and developers working on the analysed projects.

Martini et al. [Martini et al., 2018a] studied the relationship between AS and
Architectural Technical Debt (ATD) within an industrial partner. They used ques-
tionnaires and focus groups to collect the opinion of practitioners concerning a
selected set of architectural smells detected in four Java projects. Their findings
showed that practitioners were not aware of half of the smells detected in their
systems. Furthermore, those practitioners ranked AS in terms of their cost to refac-
tor, placing Cycles first, followed by Hublike Dependencies, and then by Unstable
Dependencies. Our study differs from Martini et al.’s study because we analyse
C/C++ projects from an embedded systems company and use individual inter-
views to collect qualitative data. Additionally, we focus on analysing the evolution
of architectural smell instances, collect the experiences of architects and developers
dealing with those smells, and their opinion on the results. Martini et al., instead,
perform a qualitative analysis aimed at prioritising the refactoring of the smells
detected and try to understand architectural smells’ impact on ATD.

Arcelli et al. [Arcelli Fontana et al., 2020] performed a similar study to Martini
et al. but in a different industrial setting and extended the study to 8 different types
of smells (instead of only 3). Their findings highlight that practitioners recognise
the impact of AS on Maintainability, but were not aware of the definition of many
of the 8 types of smells investigated. Similarly to Martini et al., practitioners recog-
nised Hublike Dependency as a primary candidate for refactoring, and mentioned
that some smell types (Feature Concentration, Scattered Functionality and Insuffi-
cient Package Cohesion) are only useful to consider in a layered architecture. This
work differs from our study because we analyse C/C++ projects and used individ-
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ual interviews rather than a survey to collect the developers’ opinion. Moreover,
we also combine quantitative and qualitative data instead of focusing only on the
latter. For example, Arcelli et al. focus on how architectural smells refactoring
is approached by practitioners, and while we partially cover this topic too in our
interviews, we also show our subjects smell instances detected in their system on
which they can base their answer on. Finally, our study puts a strong emphasis
on the maintenance and evolution issues related to architectural smells as experi-
enced by practitioners, while Arcelli et al.’s focuses on how practitioners perceive
architectural smells in general.

Mo et al. [Mo et al., 2018] performed an industrial study to measure the main-
tainability of the architecture using two metrics and the architectural “hotspots”
that incur high maintenance costs within 8 C/C++ and C# projects from a large
software company. The authors also complemented their analyses with interviews
with 6 subjects working for the company they collaborated with. Their findings
confirm that the tool suite they used is instrumental for architects to pinpoint, vi-
sualise, and quantify “hotspots” in the architecture of the system. Similar to results
in other studies [Arcelli Fontana et al., 2020], the development teams mentioned
that they were mostly aware of the key problems affecting their system, but it
was usually hard for them to specify or quantify those problems. In terms of the
research method, the study of Mo et al. is similar to ours, as both studies feature
a collaboration with a large software company where a tool was used to create a
report and present it to practitioners in order to collect their feedback. Our work
differs from the one of Mo et al. in two key aspects: (1) our study is more spe-
cific and focuses on a different set of architectural smells while Mo et al. combine
three different types of analyses, two of which do not concern architectural smells;
and (2) we focus specifically in studying the evolution of architectural smells in
industrial systems, while Mo et al. focus on the overall experience of applying an
automated tool suite in an industrial context.

De Andrade et al. [De Andrade et al., 2014] investigate the architectural smells
defined by Garcia et al. [Garcia et al., 2009] in an open-source software product
line (SPL) written in Java. Their study is mostly exploratory in nature and focuses
on how architectural smells affect SPLs by performing a manual detection of ar-
chitectural smells using a reverse-engineered component model of the SPL. Their
findings mostly provide insights about the SPL under analysis and the specific
instances affecting it. Our study differs from De Andrade et al. because we look
at the evolution of smell instances over time rather that at the implications created
by architectural smells at a single point in time.

Nayebi et al. [Nayebi et al., 2019] performed a longitudinal study on how the
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architectural smells detected in an industrial Java system changed after a compre-
hensive refactoring of the system. The authors analysed the system in question
6 months before and 6 months after the refactoring took place. Their findings
show that the average time needed to close issues was reduced by 72% as well
as the number of lines of code needed to do so. The authors also performed two
interviews to collect qualitative data from two key actors of the company. Their
findings show that the reports describing the amount of architecture debt present
in the system were crucial to convey to the top management the necessity of per-
forming refactoring. Our work differs in both its scope and goals. The scope of
the study is a large multinational company that mostly adopts C/C++, whereas
Nayebi et al. collaborated with a start-up company that operates worldwide and
works with Java. The goal of our study is to understand how individual instances
of smells evolve over time in industrial systems and how their effects are perceived
by architects and developers, whereas Nayebi et al. aimed at studying the effects
of refactoring on architectural technical debt (using architectural smells as proxy).

Feng et al. [Feng et al., 2019] studied how three change propagation patterns,
identified by the authors, affect the components involved in the architectural smells
detected by the DV8 tool. Their findings show that there exist only a few domi-
nating active hotspots in the evolution timelines of the 21 Java OSS projects they
considered. Our study differs from their work because we focus on the evolu-
tion of the individual instances rather than on the change patterns generated by
these. Moreover, we also collect qualitative data concerning the perceived effect of
architectural smells by C/C++ industrial practitioners.

Xiao et al. [Xiao et al., 2016] studied how an architectural technical debt index
can be modeled using architectural smells and statistical models. Their findings
show that the top 5 architectural smells (or architectural debts, using the termi-
nology of the authors) consume a large amount of the total project effort spent on
maintenance. Our study differs from their work in terms of focus and scope. The
focus of our study is understanding how architectural smell instances evolve in
the scope of industrial C/C++ projects, whereas Xiao et al. focused on the relation
between architectural smells and historical changes to the files affected; they also
modelled this relation and summarised it as an index. Moreover, they also focus
on a different set of architectural smells and work with open-source projects.

Other similar studies from the literature focus on CS, rather than on AS. How-
ever, CS are different entities than AS, as empirically verified in a previous study
on the matter [Arcelli Fontana et al., 2019b]. Thus, we only briefly summarise two
of them here because of the similarity in the data analysis methodologies.

Palomba et al. [Palomba et al., 2018] investigated the co-occurrence and intro-



64 4. The evolution and impact of architectural smells – an industrial case study

duction order of code smells in open-source Java systems, finding that more than
50% of smelly classes are affected by more than one smell and that method-level
smells may not be the root cause of the introduction of class-level smells. We
used similar techniques to Palomba et al. to analyse the introduction order and
co-occurrence of architectural smells.

Finally, Vaucher et al. [Vaucher et al., 2009] tracked a design smell (God Class)
in order to understand whether the smell originated with the class (i.e. it is by
design), or occurred by accident (i.e. it is considered bad code). The findings show
that the God Classes that are by design are less likely to be changed from version
to version, contrary to classes that become God Classes over time. Our approach
to classify the trend of smell characteristics over time is inspired from the approach
of Vaucher et al. to track God Classes.

4.4 Case study design

4.4.1 Goal and Research Questions

The research goal of this study is to improve the current knowledge on architec-
tural smells evolution within a system and understand how practitioners perceive
their presence in terms of consequences on Maintainability and Evolution. Us-
ing the Goal-Question-Metric [van Solingen et al., 2002] approach, the goal can be
formulated as:

Analyse architectural smell instances throughout a system’s history for the
purpose of understanding how they evolve and are perceived by practitioners
with respect to their characteristics, lifespan, co-occurrence, and introduction
order from the point of view of software architects and engineers in the
context of industrial software systems.

The goal is further refined into five research questions. For each research
question we explain its purpose and how it helps to advance the state of the art.

RQ1 How do architectural smells evolve in industrial software systems?

RQ1.1 How do their characteristics evolve over time?

RQ1.2 How long do different smell types persist within the system?

This question is answered by answering the two sub-research questions. The
first sub-research question aims at investigating the changes that occur in the
individual instances of architectural smells in terms of the smell characteristics
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(e.g. their size, their centrality, etc. – see Section 2.3.4). This will allow us to
understand what aspects of a smell change over time, and more generally, how the
changing structure of a smell affects the system over time. The second sub-research
question focuses on understanding the survival rate of different smell types within
the system as it evolves. This will allow us to understand in depth what smell
types influence Maintainability the most on the long-term by simply having more
time to influence the system. Subsequently, this can help to define new or refine
existing prioritisation techniques for architectural smell refactoring.

RQ2 What pairs of architectural smell types co-occur more often?

This question investigates the co-occurrence of different smell types in the same
software component (e.g. class, or package; file, or folder). The answer to this
research question can provide insights on what pairs of smells tend to appear
together often. Such insights can subsequently help in reducing the number of
smells introduced by alerting developers in advance of the possibility of performing
some preemptive refactoring.

RQ3 What architectural smell types are more likely to precede or succeed other smells in
co-occurrences?

This research question is a follow-up to the previous one. It focuses on uncovering
what smell types temporally precede or succeed other smell types. Such informa-
tion can be used to notify developers that the presence of a certain instance is likely
to lead to the introduction of more smells of a different type, therefore allowing
them to take appropriate measures. Spending some effort to remove an architec-
tural smell, can yield a great return of investment, if it prevents extra maintenance
and rework due to multiple other smells appearing in the future.

RQ4 How does information about architectural smell evolution help practitioners?

The goal of this research question is to find out if and how information about AS
helps practitioners in identifying and understanding problems in their architecture,
whether they are aware of these problems in the first place, and what aspects of the
analysis are the most helpful (e.g. historical data, smell characteristics, summary
of the analysis, etc.). We ask this RQ to examine how useful the information on
architectural smell evolution is in practice for reducing maintenance effort. This
also entails understanding what parts of the analysis provide the most interesting
and actionable insights to practitioners. Additionally, this RQ might uncover if
there is any key information missing from what is reported to the developers.
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RQ5 How do architectural smells impact a system’s Maintainability and Evolvability?

This research question investigates the effects of AS on maintenance and evolu-
tion as perceived by software practitioners. More specifically, the RQ studies the
aspects that decrease the Maintainability level of the affected parts, the long-term
development of new features (i.e. Evolvability), the possible quality-improvement
strategies practitioners might consider, and what information would help them
implement those strategies best. Ultimately, this information can be of great im-
portance in improving the quality of the output offered by tools that automatically
detect and analyse AS. The difference between RQ4 and RQ5 is that the former
deals with the problems in the architecture (smells per s), while the latter deals
with the consequences of those problems (on maintenance and evolution) as well
as how to solve them.

To facilitate reproducibility, we provide a replication package for this study3

containing the study protocol, the R scripts used for data analysis, and many other
resources.

4.4.2 The necessity of studying AS in an industrial setting

To the best of our knowledge, the vast majority of studies on this topic have a
limited scope and only focus on open-source systems that are mostly written in Java,
or focus on a different set of AS. This limits our understanding of how architectural
smells actually impact the work of practitioners in real world scenarios. Moreover,
this only allows a narrow perspective based on quantitative results thus overlook-
ing the (usually more nuanced) qualitative data. More specifically, it is of interest
to understand how developers and architects are affected by the presence of archi-
tectural smells, whether they are aware of the problems in the first place, and if so,
what decisions they make in order to remedy such problems.

Furthermore, Java systems are characterised by several different types of depen-
dencies (e.g. call, inheritance, use, etc. [Pruijt et al., 2017]) and provide constructs
such as polymorphism that offer programmers several ways to interconnect classes
and interfaces and create dependencies among them. Procedural languages such
as C, on the other hand, have a limited set of built-in features and do not encour-
age the creation of dependencies as much as their OO counterparts. Moreover, as
we will explain over the next sections, the company we collaborate with has de-
veloped proprietary mechanisms for defining dependencies between components
which might alter the way we interpret dependencies and thus all architectural
smells, the detection of which is based on dependencies (CD, UD, and HL).

3Visit https://doi.org/10.6084/m9.figshare.16884739.v1.

https://doi.org/10.6084/m9.figshare.16884739.v1
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4.4.3 Research Method

To achieve the aforementioned goal and answer the five stated research questions,
we collaborated with a large technology industrial partner, ASML4, to analyse a
few of their projects and interview some of the engineers working on these projects.

More precisely, the company showed interest in analysing one massive soft-
ware product line (of 20 million LOC) that is composed of multiple projects. The
projects are primarily written in C/C++ and compiled using a proprietary compiler
and auxiliary tools. The main business of the company is manufacturing industrial
machinery for the mass production of microchips. Therefore, all the projects con-
sidered in this study belong to this domain. In terms of our case study, the projects
are designated as the cases, and the units of analysis are the architectural smells
detected in each project. Figure 4.1 illustrates the case study design.

Context 1 (Lithography machines)

Case 1 (Project)

Unit of Analysis 1.1 
(Arch. Smell)Unit of Analysis 1.1 

(Arch. Smell)Unit of Analysis 1.1 
(Arch. Smell)

Case 2 (Project)

Unit of Analysis 1.1 
(Arch. Smell)Unit of Analysis 1.1 

(Arch. Smell)Unit of Analysis 2.1 
(Arch. Smell)

Figure 4.1: The case study design using Runeson et al.’s representation
[Runeson et al., 2012].

The five stated research questions require different types of data in order to
be answered. RQ1, RQ2, and RQ3 necessitate quantitative data about architectural
smells extracted from multiple versions of the source code of each project. RQ4
and RQ5, instead, require qualitative data collected from software architects and
engineers working on the studied projects. The remainder of this section explains
how the data collection for these two groups of research questions was performed.

Quantitative data collection

Projects and Architecture The first step of performing quantitative analysis is
selecting the cases to analyse. The selection of the projects was done in consultation
with an architect from the company. We requested that the list of projects would

4Visit www.asml.com for more info.

www.asml.com
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Table 4.2: The list of projects analysed in this study. MLOC = Million Lines Of
Code

ID Description Versions analysed MLOC last version

P01 Reticle handling 31 4.88
P02 Waterflow control 37 3.92
P03 Dose control 37 1.58
P04 Light control 37 2.22
P05 Immersion control 37 0.86
P06 Device & Data subsystems 37 6.45
P07 Machining control 37 2.56
P08 Input data manager 18 2.31
P09 Alignment & Diagnostics 9 0.011

differ as much as possible in terms of total number of lines of code (LOC), to
maximise the diversity in our sample. The selection was also influenced based on
the interest of the architects responsible for each project in obtaining information
regarding the presence of architectural smells in their systems. The final list of
projects is shown in Table 4.2. The projects differ greatly in total number of lines
of code analysed, from a few thousands to a few million. Each project is also
responsible for a single step in the manufacturing process of the microchip. One
project (P09) is relatively new compared to the rest, and thus smaller both in terms
of LOC and number of versions. We also note that, over time, the company has split
projects in two or more parts to better manage them, causing both a steep decrease
in the LOC of some projects, and other projects starting with a high number of lines
of code.

It is important to mention a few details about the architectural style of the
projects selected. The company adopts a layered architectural style with each
project (ideally) only communicating with projects from layers below them or from
the same layer. Each project is divided into multiple clusters of components that
handle a specific functionality provided by that project. Larger projects may be
divided into multiple teams, each maintaining their own cluster of components.
Projects situated in higher layers provide functionality that allow the user to com-
mand the machine and configure it. In contrast, projects located in lower layers
are responsible to govern the hardware, orchestrate other components, and pro-
vide abstraction layers to allow the deployment of the code on different kinds of
hardware. Finally, we note that all projects contain both C and C++ files, with the
former type being the most popular one.
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Architectural Smells Detection The analysis of the projects included the follow-
ing phases: detection of architectural smells, the tracking of architectural smells
over time, and the calculation of the software metrics necessary for the data analy-
sis. The detection-tracking process is repeated for every version available and the
results are merged at the end of the whole process.

To detect AS, we extended Arcan to support the proprietary C/C++ used
by the company participating in this study. Arcan’s results were validated
by previous studies and obtained a precision ranging from 70% to 100%
[Arcelli Fontana et al., 2020, Arcelli Fontana et al., 2017]. The detection of smells is
carried out through a dependency graph (DG) created by Arcan given the source
files of a C/C++ or Java project. The DGs of these two languages, however, present
several differences that influence the architectural smell detection process. For ex-
ample, DGs for C/C++ projects have nodes and edges that respectively represent
and connect header files, which are obviously not present in DGs of Java projects.
Moreover, the package structure of Java projects is a tree structure that requires
dependencies to propagate from the leaves (i.e. the classes) to their parents (i.e. the
packages containing those classes, the packages containing those packages, and so
on). In ASML, however, there is no such concept and there are no child compo-
nents. The different structures of these two languages (or, more technically, the
different graph schemas) imply that dependencies are constructed differently: in
the case of this study, the detection of architectural smells was tailored based on the
guidance of ASML engineers. In particular, components were treated as packages
and header files as Java interfaces, but only for the purpose of mining dependen-
cies (i.e. headers were not considered for smell detection). All the dependencies
detected in the header files were carried over to the exact files implementing, or
using, those dependencies.

Note that, in order to extract the dependency graph, we had to write specific
code that would account for all the proprietary changes the company implemented
to their compiler, and consequently to the syntax of the code. Additionally, since
some of the files were automatically generated at compile time, we were also
required to compile the projects in order to pick up as many dependencies as
possible. These files contained dependencies between internal components that
were manually declared by the engineers in a proprietary file format, and missing
these dependencies would have eventually resulted in incomplete results. These
two tasks turned out to be very time-consuming, and packed with arduous technical
challenges.

The tracking of the smells is then done using ASTracker (see Chapter 2), which
matches smell instances from two adjacent versions that correspond to the same
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ASTracker Arcan

Data extraction script 1

Data extraction script N

Dataset for RQ1

Dataset for RQN

Architectural smells per version

Project 1

Project 2

Project N

Data Proj 1

Data Proj N

Data Proj 2

Figure 4.2: Quantitative data collection process.

smell (i.e. they affect the same files but in adjacent versions). Usually, this process
is susceptible to file renamings; however, the file naming policies of the company
prevented the introduction of noise in this part of the analysis, as file renamings
are not an encouraged practice.

The versions we analysed were all the snapshots of the projects that the company
tagged as releases in their version control system (VCS). The time period taken into
consideration is 3-years long (from 2017 to 2020) and each release took place, on
average, 35 days after the previous. Note that the we stopped at 3 years because
the VCS used by the company at the moment was adopted 3 years before the start
of this research.

A detailed representation of the whole data collection process is shown in
Figure 4.2. For each version in the VCS, we compiled the source code to obtain
the automatically generated files (omitted from Figure 4.2), then we ran Arcan
on each project to obtain the dependency graph of that version. At the end of
the analysis, we ran ASTracker to synthesise the information contained in the
dependency graphs into CSV files of raw data. These files were then processed to
create the datasets for each individual research question.

Qualitative data collection

While RQ1, RQ2 and RQ3 required the quantitative data described in the previous
sub-section, RQ4 and RQ5 required qualitative data to be fully answered. To this
end, we planned a series of interviews with the engineers and architects working
on the projects we analysed.
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Phase 2 (Execution)Phase 1 (Preparation)

Introduction Demographic
questions

Detailed explanation
of AS and results

Questions to answer
RQ4 and RQ5 (plus

generic ones)
Conclusion

Figure 4.3: The phases and structure of the interviews.

The process for selecting the participants to our interviews started with a pre-
sentation of our analysis in one of the monthly meetings between all the architects
of the company. Architects that showed interest were contacted and their projects
were analysed. Afterwards, we prepared an interactive report5 specific to each
project analysed and sent it to the corresponding architect. Each architect was
then asked to pick a handful (3-5) of engineers that we could interview; they were
also asked whether they would like to take part in the interview themselves. Each
participant received a consent information letter, informing them of their rights
as participants, and a copy of the report with the results of the analysis. The re-
port also contained a quick guide to allow them to understand the results. The
participants were asked to inspect the report before taking part in the interview.

The interviews lasted 30 to 40 minutes each and were performed remotely by
the first author using video-conferencing, individually with each participant listed
in Table 4.3. Interviews followed a semi-structured format [Runeson et al., 2012]
as depicted in Figure 4.3 and further detailed in Figure 4.4. As it can be noted, the
actual questioning session (Phase 2, in Figure 4.3) was preceded by an introduction
to the study, some demographic questions, and an explanation of the key theoretical
concepts necessary to understand the questions in Phase 2. The questions asked
in Phase 2 were grouped by topic and map to either RQ4 or RQ5, as shown in
Figure 4.4. Given the semi-structured format, the interviewers also asked follow-
up questions and may have not followed the predefined list of questions if an
interesting point, worth of further investigation, was touched during the session.
The full interview guide is available in Appendix B.1.

5An anonymised version is available in the replication package of this study.



72 4. The evolution and impact of architectural smells – an industrial case study

Feedback

RQ4 RQ5

Impact of smells on
Maintainability

Impact of smells on
Evolvability

Possible remediation
strategies

General

General insights
emerging from the

analysis

General feedback on
the results

Importance of smell
types and

characteristics

Perceived and actual
quality of the system

Figure 4.4: The structure of the first step of phase two, focusing on RQ4 and RQ5.

Table 4.3: Background information on the interviewee and their respective projects.

ID Project Official position
Years of exp.

curr. role in total

I0 P05 Product Architect 4 8
I1 P03 Design Engineer 3 4
I2 P03 Software Architect 8 14
I3 P03 Design Engineer 4 15
I4 P03 Design Engineer 2 8
I5 P08 Design Engineer 4 10
I6 P08 Software Architect 6 15
I7 P07 Software Architect 7 25
I8 P07 Software Architect 8 22
I9 P07 Software Architect 6 23

I10 P02 Design Engineer 3 3
I11 P02 Lead Design Engineer 5 20

Average 5 13.9
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4.5 RQ1 – Architectural smells evolution

4.5.1 RQ1.1 – Evolution of smell characteristics

Data analysis methodology: Dynamic Time Warping

To understand how smell characteristics evolve over time, we adopt the same
technique we used in Chapter 2 [Vaucher et al., 2009]: signal classification with
Dynamic Time Warping6 (DTW) [Kruskal and Liberman, 1983]. This approach
considers every series of values of every characteristic of every smell instance as a
signal (or time series) and then compares each signal to a series of predefined signals
(templates), each one with a corresponding label. Depending on the template that
is the mathematically closest to the signal, a label is assigned to it.

Formally, we can model the problem as follows: for every smell characteristic
Ck of a certain smell k we consider the different values Ck

i as a signal S. We then
compute the following variables: h = max S; l = min S; and m = (h + l)/2. These
three values are then used to build the seven templates, named from a to g, shown
in Figure 4.5. For example, template (c) is defined as c = (l, l, h, h). The values l,
m, h are re-calculated for each signal classified. Finally, the signal is classified by
comparing the distance of the signal from each template, and selecting as a label
the name of the closest template.

(c) Sharp
increase

(b) Gradual
increase(a) Constant (d) Temporary

increase
(e) Temporary

decrease
–h

m–

l –

(g) Gradual
decrease

(f) Sharp
decrease

Figure 4.5: Trend evolution classification templates. Figure adapted from the work
of Vaucher et al. [Vaucher et al., 2009].

Even though the selected templates offer a good variety of possible signal
shapes, there exist some cases that may not be well approximated by the current
selection. One example is a signal that varies between two integer values (e.g. 6-7)
multiple times, which would be classified by the model as a constant signal (i.e.
template (a)). Nonetheless, we deem that the approximation offered by the model,
when classifying such unusual signals, is sufficient for the purpose of this chapter
for the following reasons:

6The implementation used for this analysis was provided by the R package dtw.
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Table 4.4: The number of unique temporal AS instances that that have an age of at
least 3.

Smell Type File-level Component-level Total

Cyclic Dependencies 14,637 941 15,578
Hublike Dependencies 151 40 191
Unstable Dependencies – 273 273
God Component – 190 190

• the templates selected represent simple and general cases, thus they simplify
interpretation and analysis;

• a signal is classified based on the distance DTW calculates between the points
from the template and points from the signal, thus the classified signal has at
least an internal component that resembles the assigned template.

Results

The results shown in this section concern smells that affected the system for at least
3 releases, in order to avoid spurious outcomes and focus on long-lived smells.
Note that in this section, unless specified, or the context implies otherwise, when
we refer to an AS instance we usually mean a smell that was detected in multiple
versions and was identified as the same smell.

Finally, we use the following terminology: version and release are used inter-
changeably, component refers to a group of files defined as such by the architects of
the system, artefact refers to both files and components, and the terms co-occurrence
and overlap (among AS) are used interchangeably.

Cyclic Dependencies (CD) As Figure 4.6 shows, most of the 15,578 CD instances
exhibit either an increase in the number of artefacts affected (i.e. size) or they
remain steady over time. More specifically, 43% increase in size in some way, 36%
stay constant, and only 21% of them decrease. As expected, a similar pattern also
emerges when looking at the number of edges among the affected artefacts (since
they are correlated , see Chapter 2).

The PageRank of the cycles7 is decreasing in 70% of the instances, contrary to

7Calculated as the maximum PageRank of the affected artefacts and normalized by the number of
artefacts in a version.
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Figure 4.6: The classification of AS’s instances trend for various characteristics
grouped by smell type. The classification is in percentage of the total number of
instances with at least an age of 3. The classification (represented by the colour)
for each characteristic is grouped by the overall trend (constant, represented as a
black block; increasing, represented as an up-pointing triangle; and decreasing,
represented by a down-pointing triangle).

what we found in a previous study on open-source Java systems from Chapter 2.
The remaining 21% of instances increase in PageRank, and only 9% stay constant.

Typically, a file can have two types of dependencies (internal to the system)
the first is to another file in the same component, and the second is to a file in
another component. Dependencies that cross the border of the component can also
create cycles among components, either a) directly as a result of two or more files
from the affected components creating a cycle among them; or b) indirectly, as a
result of files that depend on files in another component but do not create a cycle
among them, yet they create the dependencies among the components that in turn
create the cycle (see Figure 4.7). We call this characteristic ‘Affected design level’
(see Table 4.1), and we used this characteristic to study how many cycles cross this
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Figure 4.7: Example of two cycles among components: one among C1 and C2
that is also present among the files contained in them; and one among C1,
C2 and C3 that is only present among the components. Figure adapted from
[Al-Mutawa et al., 2014].

border. In the systems we analysed, 98% of cycles are only among files, whereas
the remaining 2% are at the component level. This means that, the vast majority
of cycles is fully enclosed within the component their files belong to (i.e. they do
not cross the component’s border), which is a good sign of encapsulation but also
means that components are quite entangled internally. This could probably be
because of the specific architecture of the system, which is divided in components
that hide all the functionality under an interface.

Concerning the shape of the cycles, 73% of the instances exhibit no change in
shape over time, whereas the remaining ones (4206 instances) mutate as illustrated
in Figure 4.8a. The chord diagram depicts the proportion of the cycle shapes that
changed into another shape. Each sector of the diagram corresponds to a specific
shape with outgoing edges that represent the proportion of the population of that
shape that transforms into another shape. For example, only a tiny percentage
of circle instances change shape, and therefore the corresponding sector of the
circle shape is rather small, despite constituting the majority of the population of
cycles (86%). As it can be noted, some shapes (i.e. chain and star) are more prone
to changes than others, i.e. they have a greater percentage of their population
changing. There is also a certain balance across all shapes in the number of instances
changing into a shape and changing from a shape. By looking more closely at the
data, we notice that this was due to the fact that most instances bounce back and
forth from one shape to the other. The circle is a special case: despite only 5%
of circle instances being involved in changes, due to the sheer number of circle
instances, the majority of changes involve circle shapes. Thus, circles are more
likely to transform into any other shape, unlike stars for instance, which are more
likely to change into chain or circle only.



4.5. RQ1 – Architectural smells evolution 77

C
H

A
IN

0 5 10
15

20

25
30

3
5

4
0

4
5

5
0

5
5

60

C
IR

CLE

0

CLIQUE

0
5

10
15

S
T
A

R

0

4
5

5
0

5
10

15

20

25

30
3
5

4
0

5
5

TIN
Y

0

5
10

15
20 25

(a) Chord diagram of how cycle shapes change, controlled
for the distribution of shapes in the cycles population. The
numbers represent the percentage of the total population of
the corresponding shape.

(b) Symmetric cycle shapes
detected by Arcan and de-
fined by Al Mutawa et al.
[Al-Mutawa et al., 2014].

Figure 4.8: The cycle shapes considered in this study and how they change over
time. The total population of cycles is as follows: Circle 86%, Clique 7%, Tiny
4%, Chain 1.5%, Star 0.5%). Only instances that persists for at least 3 releases are
considered.

Unstable Dependencies (UD) For this smell type, as shown in Figure 4.6, 49%
of the 273 instances tend to remain constant in size over time, in 37% of the cases
UD increase in some way and the remaining 14% of the times they experience a
decrease of some sort. A similar behaviour is observed for the number of edges as
well.

The PageRank of UD differs quite a lot from the other smell types, as we observe
that 11% of instances stay constant, 42% have an increase of some sort, and 46%
experience a mostly gradual decrease. For other smell types, PageRank is mainly
decreasing, whereas for unstable dependencies, a significant amount of instances
exhibit an increase, meaning that they move towards more central parts of the
system. This means that components that are prone to change move towards more
inner parts of the system. This is not an ideal scenario, as Martin [Martin et al., 2018]
states that it is preferred to have dependencies that point toward more stable
components in order to reduce change propagation.

Moreover, the gap in instability between the affected component and its depen-
dencies is showing an increase in 38% of instances, a decrease in 39% of instances,
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while the remaining 22% exhibit a constant trend. This means that there is no
clear trend of instances that exhibit a clear increase, or decrease, in the instability
measured in the central component and in its less stable dependencies (see Figure
2.2c for more context).

The ratio of dependencies of an UD-affected component that are less stable than
the affected component (i.e. the strength characteristic) was found to increase or
decrease in equal percentages (28% each), and stay constant in the remaining of
cases (42%).

Hublike Dependency (HL) Hubs tend to either stay constant in size (49% of
instances) or increase (40% of instances), with the remaining 11% decreases. There-
fore, over time, hubs involve more and more artefacts.

By looking at the number of files within the central component that provide
functionality to external components (incoming dependencies, i.e afferent ratio8)
and at the ratio of files within the central component that use external components
(outgoing dependencies, i.e. efferent ratio) we note the following: the afferent ratio
is increasing in 46% of instances and decreasing in 11% of instances only (remaining
43% are constant); the efferent ratio on the other hand, exhibits an increase in 32%
of instances and a decrease in 36% of instances (remaining 32% are constant). This
means that at least some HL instances tend to provide more functionality over time
themselves rather than depending on their outgoing dependencies to provide such
functionality. This phenomenon is not optimal for the overall architecture of the
system as it means that hubs, over time, replace the functionality of their dependants:
instead of having other dedicated components to provide that functionality, hubs
take their place (i.e. they accumulate features). The final result of this process is that
hubs drift away from their initial purpose and become aggregators of functionality,
weakening the separation of concerns originally intended by the architects.

Finally, we observe the trend of the affected ratio, i.e. the number of files within
a hublike component that create the incoming and outgoing dependencies, thus
creating the smell. This is increasing in 46% of the cases, decreasing in 29% of
cases, and the remaining 25% are constant. Thus, as aforementioned, hubs grow
to become more complex over time and more connected to their incoming and
outgoing dependants.

8This is a ratio characteristic, however, for this analysis, it was weighted with the number of elements
in the central artefact in the respective version to ensure we detected the absolute variations inside the
internal artefact.
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God Component (GC) The number of elements in the components affected by
GC (i.e. size) increases in 53% of the cases, stays constant in 40% of the cases and
decreases in 6% of the cases. Similarly, also the lines of code density increases
46% of times, decreases in 34%, and stays constant in the remaining 20%. We can
therefore conclude that GC tend to grow in size over time, possibly aggregating
more concerns and growing in complexity.

The PageRank of GCs follows a similar pattern as for the other smells, with 65%
of instances exhibiting a steady decrease, 24% of them an increase, and the rest of
them (11%) stay constant. This is a rather unexpected result as GCs, being large
components by definition, are expected to also have an increase in their centrality
over time. This result however hints that the new functionality added in other
parts of the system is ultimately less and less connected to the functionality offered
by GCs given the decreasing PageRank of the majority of GC-affected components.
Such a pattern however is only observed globally in the whole dependency network
of the system; locally, GCs still experience a growth in the number of files within the
component and number of dependencies among those files (as mentioned above).

Summary of RQ1.1 results The general trend that we notice across the evolution
of the smell characteristics is that each characteristic fits one of two patterns: it
either (1) exhibits a dominant constant trend followed by either an increasing or
decreasing trend; or (2) it exhibits a dominant increasing or decreasing trend. The first
case entails that those smell characteristics are mostly unaffected by the evolution
of the smell. Examples of this case are CD Size, UD Size and CD Number of Edges.
In the second case, the opposite is true and the evolution of smell characteristics has
a clear direction over time. Example of this case are PageRank for all smell types or
GC Size. This information can be exploited by using the smell characteristics of the
second type as predictors for the evolution of an instance to establish the severity
of a smell. Instances with smell characteristics that have a clear trend and are
bound to reach certain thresholds could be brought to the attention of developers
before they become problematic and pose a greater threat to the maintainability
and evolvability of the system.

4.5.2 RQ1.2 – Persistence of Architectural Smells in the system

Data analysis methodology: Survival analysis

Different architectural smell types were found, in Chapter 2, to have drastically
different persistence rates within Java open-source Systems. To establish the per-
sistence rates in our case (embedded systems written in C/C++), we employed
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the same technique used in our previous work in Chapter 2: the Kaplan-Meier
estimator, or survival analysis. This technique is typically used in the biomedical
sciences and in product reliability assessment; in addition, prior to our previous
work from Chapter 2, it was also employed in software engineering to analyse code
smell persistence [Chatzigeorgiou and Manakos, 2014].

Unlike simple descriptive statistics, such as mean or density functions, survival
analysis also takes into consideration the possibility that a smell continues to affect
the system even after the last version included in the analysis. In the biomedical
domain, this event is associated with the patient surviving past the period of the
analysis. More technically, this type of data is said to be right-censored, because the
outcome of the treatment cannot be measured, due to the conclusion of the study.

The survival analysis is performed using the Kaplan-Meier estimator
[Kaplan and Meier, 1958], a non-parametric statistic that estimates the survival
probability of a type of smell as the system evolves (new versions are released).
The statistic gives the probability p that an individual patient (i.e. smell in our
case), will survive past a particular time t. At t = 0, the Kaplan-Meier estimator is
equal to 1, and as t goes to infinity, the estimator goes to 0. Also, the probability
of surviving past a certain point t is equal to the product of the observed survival
rates until t.

Results

The results of this analysis are presented in Figure 4.9. The figure shows the survival
rate for both smell types and cycle shapes. Figure 4.9a differentiates between smells
at file and component level for cycles and hubs: the appearance and disappearance
rates of dependencies among files and dependencies among components may be
different, thus we study them separately. Given their definitions, UDs and GCs
cannot be detected at file level; therefore, we only considered them at component
level.

Smell types By looking at Figure 4.9a, one can note that the smell type with the
lowest survival rate are cyclic dependencies among components, which tend to dis-
appear from the system rather quickly: they exhibit a 50% probability of surviving
more than 6 versions. Cycles at file level instead manage to affect the system for a
little bit longer, reaching 50% probability of surviving after 9 versions. This makes
sense as it is much more likely for developers (in the company subject to this study)
to eliminate unwanted dependencies towards files in external components, rather
than towards internal files. Hubs show a similar survival rate and reach the 50%
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probability of surviving at 8 versions, at file level, and 16 versions at component
level, before converging later on. God components and Unstable dependencies
reach it at 19 and 24 versions, respectively. God components, however, maintain a
flatter curve and stay close to the 50% threshold for longer. Another interesting fact
that can be derived from Figure 4.9a is that the curves stabilise eventually (see the
right-most part of the plot) and do not go below a certain probability (excluding
cycles at component level). This is probably due to the fact that the parts of the
system affected by smells for a long time tend to become legacy code that is either
very hard to change or has no reason to be changed. Our interviews have provided
some insights into this phenomenon, which we will explore in more depth in the
discussion section (Section 4.9).

Cycle shapes In Figure 4.9b, we focus on the survival rates of cyclic dependencies,
regardless of the type of artefact they affect, and distinguish between different
shapes. Circles are the ones that are more likely to disappear from the system (50%
chance of surviving for one version), however, they are also the most common type
of shape and much easier to form, especially in comparison with chain, clique and
star. Cliques, despite being a much more complex type of shape, have a similar
survival rate to the one we observed for circles. This is probably due to the fact that
cliques are less common, harder to appear, and can be “broken” just by removing
one edge from their structure. Moving to stars, despite being relatively complex
(and thus relatively easy to break down), they manage to survive within the system
for a much longer time, reaching 50% of survival probability only after 17 versions.
Finally, chain and tiny shapes are the ones that exhibit the longer survival rate while
also having a relatively stable curve. This is probably because: a) these shapes are
very similar; b) cycles between fewer elements are less likely to be perceived as
problematic - in fact, they could be intentional.

4.6 RQ2 – Architectural smells co-occurrence

4.6.1 Data analysis methodology

To find out what pairs of architectural smells co-occur more often, we used a simple
approach: we calculated the co-occurrence matrix for each type of architectural
smell detected by Arcan. This resulted in a 6 × 6 matrix, where the rows and
columns are labelled with the names of the smells. However, for the sake of
readability, we report the results in two matrices, one 4 × 4 matrix for component-
level smells and one 2×2 matrix for file-level smells. The value in each cell of these



82 4. The evolution and impact of architectural smells – an industrial case study

+
+
+++++++++++++++++++++++++++++++++++

+

+
+
++++++++++++++++++++++++++++++++++

+++++++++++++++++++++++++++++++++++++

+
+
+
+
+++++++++++++++++++++++++++++++++

+
+
+
++++++++++++++++++++++++++++++++++

+
++++++++++++++++++++++++++++++++++++

0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

Time

S
u

rv
iv

a
l R

a
te

+

+

+

+

+

+
Cyclic Dep. Comp.

Cyclic Dep. File

God Comp.

Hublike Dep. Comp.

Hublike Dep. File

Unstable Dep.

(a) Survival rate of smell types.

+
++++++++++++++++++++++++++++++++++++

+

+
+
++++++++++++++++++++++++++++++++++

+

+
+++++++++++++++++++++++++++++++++++

+
+
+++++++++++++++++++++++++++++++++++

+
++++++++++++++++++++++++++++++++++++

0 10 20 30 40

0.00

0.25

0.50

0.75

1.00

Time

S
u

rv
iv

a
l R

a
te

+

+

+

+

+CHAIN

CIRCLE

CLIQUE

STAR

TINY

(b) Survival rate of cycle shapes.

Figure 4.9: A visualisation of the Kaplan-Meier estimators. The plot reads as
follows: after a certain time t (on the x axis), smell type s has a probability p (on the
y axis) to survive. Dashed vertical lines represent the value t when p = .5.

two matrices is calculated as follows:

cooci, j =
# of instances of type i overlapping one of type j

# of total instances of type i
× 100 (4.1)

with i , j. By ‘overlapping’ we mean that the two smell instances must affect at
least one artefact in common in the same version. However, some architectural
smells involve various artefacts which play different roles; thus we also distinguish
between the different parts of the smell that may overlap:

• for Hublike Dependencies we distinguished between the incoming depen-
dencies (artefacts C1-3 in Figure 2.2b), outgoing dependencies (artefacts B1-3
in Figure 2.2b), and the central component, or the hub (artefact A in Figure
2.2b);

• for Unstable Dependencies we distinguished between the central component
(component A in Figure 2.2c) and its outgoing dependencies that are less
stable (components B1-3 in Figure 2.2c);

• for Cyclic Dependencies we did not make any distinction, as every component
of the cycle plays a similar role in the smell;

• for God Component we did not make any distinction as the smell constitutes
a single element.
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Note that for this analysis, we counted every smell detected individually, without
linking it to its corresponding instances in adjacent versions. This way, we capture
not only the overlaps that take place in multiple versions but also those that happen
in one version; thus we represent a more precise picture of the overlaps of smells.
Moreover, this approach is very similar to what was done in a previous study on
code smells [Palomba et al., 2018].

4.6.2 Results

The results obtained for this research question are reported in Table 4.5, for
component-level smells, and in Table 4.6 for file-level smells. The values in the
table represent the percentage of the total number of instances of the smell in the
corresponding row that overlap with the smell in the corresponding column (hence
the table is not symmetrical).

Component-level smells With a first glance at Table 4.5, one can note that the
architectural smells in the analysed systems have a very high overlap, which is
reasonable given the definition of some smells (i.e. they involve numerous compo-
nents).

Looking at the CDs in Table 4.5, we note that given their abundant presence in
the system, they overlap with the other smell types in high percentages (from 76%
to 99%, as seen in the first row). This is most likely due to the fact that cycles affect
multiple elements, and it is easier for an instance to overlap with another instance
of a different type. Nonetheless, it is interesting to note a discrepancy between how
many CD instances overlap with a GC (86%), and how many GC instances overlap
with a CD (58%). This is because several god components take part in multiple
cycles: a significant number of cycles (86% of 12,135) overlap with a GC but there
are only 3,165 instances of GC, which means that multiple cycles must be affecting
the same GC instances.

Concerning HL instances, it is interesting to note that 74% of hubs (centres) are
also unstable, meaning that the risk of changes propagating to their dependants
is increased. We also note that hubs can be intentional design choices that expose
low-level functionality to components with a high level of abstraction under a
single interface (as mentioned by some interviewees). Nonetheless, this could be a
double-edged sword: while hubs might serve the purpose of abstracting low-level
functionality, they might also increase the likelihood of changes propagating from
low-level components to unrelated high-level components. In addition, as Martin
mentions (see the Stable Dependencies Principle [Martin et al., 2018]) this could
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also mean that they become harder to change, because there is a lot of high-level
functionality that might depend on it but it is hidden to developers by the central
hub.

God Component, compared to the other smell types, exhibits fewer overlaps.
This low interaction rate is particularly notable with hubs, as only 10% of GCs
are also hubs (centres of HL). This highlights how the two smell types centralise
logic differently: GCs aggregate implementation, and therefore they grow in number
of lines of code, whereas HLs aggregate abstractions and delegation, and therefore
they grow in number of incoming and outgoing dependencies. Furthermore, we
observe that 46% of GC instances are also UD instances whereas we see only 29%
in the opposite case. This means that 46% of the GC instances, which aggregate
functionality and thus increase in size and complexity, are more likely to change
due to changes in neighbouring components.

Unstable Dependencies were mostly covered when discussing the other smell
types, but it is still noteworthy to mention that 52% of them have their centre taking
part in a cycle and 97% of all cycles go through an unstable dependency centre.
This increases the chance of changes propagating to other components and ripple
through the elements affected by the cycle. Moreover, we note that only 8% of UDs
are hubs, which makes sense as the definition of UD is not based on the number of
incoming/outgoing dependencies (unlike HL); this means that it can be detected in
more parts of the system, thus explaining the small percentage of overlaps.

File-level smells Looking at Table 4.6 we note that the number of cycles among
files and the number of hubs among files differ by two orders of magnitude. How-
ever, we still observe that a lot of cycles (14%) have an overlap with hubs at file
level, which means that one or more cycles go through a hub. Likewise, 94% of
hubs, 97% of incoming and 99% of outgoing dependencies are also involved in
cycles.

The high number of cycles and their overlap with hubs suggests that the de-
pendencies internal to the components are tightly coupled. This makes changes
hard to implement, because it may not be clear how responsibilities are shared
between files and how a change will impact other files. This means that hubs at
file-level are a very likely to be a maintenance hotspot, as they not only accumulate
responsibilities, but they are also a sign of high coupling among the hub, the files
depending on it, and the files it depends upon caused by the cycles among those
very files. We caution, however, that these may only be specific to the projects
analysed and not applicable in a different context.
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Table 4.5: Co-occurrence (or overlap) of component-level architectural smell types.
Percentages refer to the total number of instances, shown in the right-most column.
Key values are underlined and in bold face.

Smell Type CD
UD HL

GC
Total

Instancesless stable centre incoming centre outgoing

CD - 99 % 97 % 91 % 76 % 94 % 86 % 12,135

UD
less stable 92 % - 83 % 61 % 42 % 83 % 59 %

5121
centre 52 % 50 % - 49 % 8 % 32 % 29 %

HL
incoming 89 % 93 % 94 % - 55 % 77 % 74 %

587centre 77 % 82 % 74 % 53 % - 55 % 59 %
outgoing 95 % 100% 90 % 79 % 53 % - 78 %

GC 58 % 60 % 46 % 41 % 10 % 42 % - 3,165

CD: Cyclic Dep. HL: Hublike Dep.; UD: Unstable Dep.; GC: God Comp.

4.7 RQ3 – Architectural smells precedence

4.7.1 Methodology

Similarly to the previous RQ, to calculate the number of times a smell type is
introduced before another smell type, we used a matrix. For each architectural
smell type i and j (with i , j):

intrk
i, j =

# of times an instance of type i preceded one of type j
# times AS instance of types i and j overlap within k versions

× 100 (4.2)

Table 4.6: Co-occurrences (or overlap) of file-level architectural smell types. Per-
centages refer to the total number of instances, shown in the right-most column.
Key values are underlined and in bold face.

Smell Type CD
HL Total

Instancesincoming centre outgoing

CD - 27 % 14 % 44 % 203,646

HL
incoming 97 % - 54 % 88 %

1,345centre 94 % 55 % - 54 %
outgoing 99 % 91 % 55 % -

CD: Cyclic Dep. HL: Hublike Dep.
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To obtain more insight, we look into how many versions it usually takes for a
smell of a different type to be introduced. To this end, we repeated the calculation
by counting the times that a smell type i was introduced before another smell type
j if and only if j was introduced at max k versions after i, with 1 ≤ k ≤ 37. In total,
we ended up with 37 matrices, one matrix for each value of k. Note that 37 was
chosen because it is the maximum number of versions we analysed. This setting
allows us to understand how the precedence values vary when looking farther in
time (i.e. larger values of k).

4.7.2 Results

The results for this research question are presented in Figure 4.10. The figure shows
the values assumed by intri, j for different values of k. Each quadrant shows the
percentages of instances where the smell type i is the predecessor of an instance
of smell type j in percentage of the number of times instances of type i and j
overlapped within k versions.

CD instances tend to precede the other smell instances by one release (k = 1) in
60% to 80% of the cases, depending on the smell. For small values of k, file-level
cycles precede hubs in more than 50% of cases; whereas for k = 37, this is less
likely to happen as cycles have rather short lifespans (see RQ1.2 results), so the
percentages plunge down to 30%. Component-level cycles, instead, precede the
introduction of other smell types rather commonly, reaching up to 75% for k = 1,
meaning that as soon a cycle appears it is very likely that another smell will affect
one of the components in the cycle. Similarly to file-level cycles, component-level
cycles also have a short lifespan, so the percentages of precedence follow the same
pattern.

For small values of k, UD instances are likely to precede HL instances in the
same component (60% of the cases), with GC and CD being a bit less likely. Since
CD instances are much more common, when using higher values of k, they are
much more likely to succeed UD instances (75%). These results hint that the
frequent changes affecting UD instances are very likely to cause them to overlap
with a CD, GC, or HL down the road, possibly due to the higher instability of their
dependencies that force them to change more often and develop other smells.

GC instances seem to have the highest variability, with 75% of instances pre-
ceding HLs, 55% preceding UDs, and 30% preceding CDs. This means that the
complexity of a GC is very likely to introduce other smell instances such as a HL
and/or a UD. Only when k is larger, a CD instance is eventually introduced.

HL instances at the component-level, on the other hand, are much less likely to
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Figure 4.10: The percentage of instances for each smell type that precede the
other smell types, measured for different values of k. Each quadrant represent the
predecessor smell type. Percentages are weighted by number of occurrences in
each project for a given value of k.

precede another instance, especially on the short term (k ≤ 3). UD instances are the
most likely at 35%, followed by CD at 25 % and GC at 23%. File-level HL instances
are likely to precede CD (almost 50% of HLs do so) because CD are ubiquitous.
However, what is most interesting, is when we consider how HL ranked in the
results of other smell types. We note that HL are usually more likely to appear
after other smell types, in fact they are always the most likely smell type to appear
after a smell of another type was introduced.

4.8 RQ4 and RQ5 – Practitioners and Architectural
Smells

4.8.1 Data analysis methodology

The qualitative analysis adopted the Constant Comparative Method
(CCM) [Glaser and Strauss, 2017, Boeije, 2002], part of Grounded Theory
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[Glaser et al., 1968], to deduct valuable insights from the interviews. Grounded
Theory (GT) is one of the most important methods in the field of qualitative data
analysis. It has been used extensively within both social sciences and software
engineering and provides a structured approach to process and analyse the data
collected from multiple sources. GT increases the theoretical sensitivity of the
researcher as the data analysis progresses and eventually allows to formulate hy-
potheses and theory [Glaser et al., 1968].

As mentioned above, we have used CCM, an inductive data coding and catego-
rization process that allows a unit of data (e.g., interview transcript, observation,
document) to be analyzed and broken into codes based on emerging themes and
concepts; these are then organized into categories that reflect an analytic under-
standing of the coded entities [Mathison, 2005].

The qualitative data analysis process is presented in Figure 4.11. During the first
phase (Phase A), the collected material (i.e. interview recordings) was studied and
a code map was created to organise the codes used to tag the data. After completing
this phase, the coding process started (Phase B), which also involved updating and
re-organising the codes based on the new understanding of the data. As new
interviews were recorded, transcribed, and coded, the data was also gradually
analysed and notes were taken with the aid of the codes in the data (Phase C). To
aid with the organisation of the codes, we created a network of codes9, where each
code was linked to other codes based on their relationship. In total, two rounds
of coding where done, the first one as interviews were transcribed, and the second
one after the transcribing process was completed, to ensure that the codes added
along the way were present in all the data. Additionally, coded quotations from
the interviews that referred to the same topic (e.g. two participants referring to
the same event) were linked together to help navigate the quotations during data
analysis. This process included both intra- and inter-document quotations, where
documents refer to interview transcripts. The whole process was performed by the
first author of the chapter while the second author reviewed the codes and coding
schemes; these were developed to reduce the risk of biases (e.g. confirmation and
information bias). To automate the data analysis as much as possible, we relied on
Atlas.ti10, a dedicated qualitative data analysis tool.

9See replication package.
10See https://atlasti.com/.

https://atlasti.com/
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Phase CPhase BPhase A

Study the material

Define codes

Read and code the
material

Reformulate, split and
categorize codes

Code analysis

Take notes of findings

Figure 4.11: The phases of the qualitative data analysis process.

4.8.2 Results

RQ4 – Support to practitioners

Overall considerations Most of the interviewed participants stated that the re-
ported results resembled what their intuition and expectations were prior to seeing
the report.

“It was more like a confirmation, because yeah, since I was busy with this
project for five years, I had a feeling where the bottlenecks were and which
components were changed the most.”

Many practitioners also reported that the results correlate with the parts of the sys-
tem they experienced issues (either currently or in the past). The most unexpected
result for some participants was the number of Cyclic Dependencies affecting the
files within a certain component; they mostly underestimated it, particularly for
components that are relatively new.

“Something that I didn’t knew is that Component X and Component Y are
also not doing good while they are relatively new components.”

This begs the question whether the architectural smells analysis actually helps
architects and developers, since they already know where the issues are. Partici-
pants mentioned that the report provides them with the following benefits: (a) a
“good view” of where cyclic dependencies are so they do not have to “grope in
the dark”, (b) a way to prioritise the future improvements based on where exactly
the current smells are, (c) a good idea of how complex and extended a specific
change (e.g. add/modify a requirement) could be, (d) a way to track the issues,
making them visible to the rest of the team, (e) a clear approach to determine when
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an issue has been fixed, and (f) a way to find out if the problem reappears in the
future.

A common point among all these benefits is that they all contribute, in one way
or another, to sharing the knowledge of the problems present in the project with
all team members in a way that would otherwise be tacit. One participant also
highlighted the usefulness of the information provided for new team members:

“[...] this will be very useful, for example, to any person coming to the team or
a new architect of a team. Graphs like this will then provide years of experience
in one go.”

Transferring and tracking knowledge as a team can be rather cumbersome
[Rus and Lindvall, 2002], so automating this task with a tool, is an added value
that several practitioners appreciated, and expressed a desire to integrate into their
workflow in order to receive periodical reports.

Finally, the fact that the reported issues are already known to practitioners is
considered as a positive outcome of our study. It indicates that the AS we were
able to identify are true hotspots within the system (though quantifying this using
the Precision and Recall metrics was out of the scope of this study). It is also worth
noting that in some cases, the problematic components highlighted in the results
were already part of the quality improvement roadmap that one designer proposed
to the architect responsible for their project.

Specific feedback After having established that the analysis actually provides an
added value to the practitioners, we now describe which details provided them
with the most insights.

In terms of the information contained in the report that the participants marked
as useful, or referenced while explaining something, or implied that it allowed
them to plan future activities accordingly, we have the following:

• the dependency graph of components, as it provided an overview of the
current state of the system’s architecture;

• the heatmap showing what components were affected by most smells (and
what type these smells were), as it allowed to identify the hotspots of the
systems quickly, and plan accordingly;

• the total number of smells (divided by type) over time, as it showed the trend
of the quality of the system;
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• the histogram with the number of incoming and outgoing dependencies for
each component in the current version, as it shows an overview of the system
like the dependency graph but allows for an easier comparison between the
components;

• the number of components involved in a smell (i.e. the Size characteris-
tic), and other characteristics (like shape of a cycle), as it provided a quick
summary about the smell and its possible effect on the system in a glance;

The fact that all this information could be generated automatically, with very little
configuration by the user, and on-demand, was greatly valued.

Missing information The participants also provided their opinion on what infor-
mation is missing from the report. A common feedback that we received is the lack
of ability to dive into the details of a specific smell, and visualise the relationship
between the affected components, how they interact with their neighbours, and
other contextual information useful to fix that smell. However, it is fair to note that
this was also not the purpose of the report to begin with; rather, it was designed to
provide a general overview of the architectural smells present in the system.

RQ5 – Impact on Maintainability and Evolvability

During the interviews, practitioners shared several experiences concerning the
maintainability and evolvability of components that were affected by smells. Al-
though the majority of these anecdotes referred to different events and projects,
most of them had enough similarities to allow us to identify a few patterns in the
types of issues faced when trying to maintain or evolve the system.

Ripple effects The most common type of problem is related to the ripple effects
of changes. Making any kind of change to components affected by smells, is a
troublesome process that required additional effort to carry out. This additional
effort was mostly due to changes that would propagate to parts of the system that
were partially, or totally, unrelated to the original change.

“When I consider our changes in the past, these components are almost always
touched. Depending on whether we can keep a change internal to a component
or not, it may be that the change propagates to interface of this component. If
it does, then we get this domino effect.”
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Change propagation (or change ripple effects) is problematic, as changing a compo-
nent might propagate to different components belonging to different teams. This
often means that a simple change could impact multiple teams, thus requiring
further synchronisation between the teams to get it done; ultimately, the change
becomes much costlier. The same participant that gave the previous quote, pro-
vided an example of this phenomenon after being asked whether he/she noticed a
correlation between changes and the components affected by smells:

“Two years ago I made some changes in Component X that propagated to 56
components only because we changed the interface of that component. The
changes we made were big and not backwards compatible and we had to change
almost 60 different components in 5-6 teams, and it took a year to get everything
done.”

In this case, Component X was affected by both God Component and Unstable
Dependency, and the subject also mentioned Unstable Dependency as the most
critical type of smell before providing this example. We cannot claim, of course,
that the presence of the two smells are directly the cause of the ripple effects
of these changes in other components. However, the answers provided by the
subjects directly link the presence of smells with an increased change propagation
and change-proneness in the affected and neighbouring components.

On a similar note, another practitioner mentioned an example where changes in
the code belonging to low-layer components that control the hardware propagated
to components in higher layers, even though that was not supposed to happen.
The low-level components were responsible for controlling some underlying sen-
sors and hardware with the goal to support the hardware of a new machine. The
changes to these components triggered changes that rippled upward in the hierar-
chy of layers and the amount of work required to complete the update process was
initially underestimated. The subject linked this particular case to both Hublike
Dependency and Unstable Dependency: the low-level hardware components were
controlled by a middle-level component, which was both unstable and a hub, and
the high-level components depended on it.

Finally, ripple effects were also commonly associated with God Components
and their inherent internal complexity as well as with the fact that they usually
contained a lot of legacy code. Making changes to complex God Components
was considered a risk, because every change could affect multiple files and change
the behaviour in unknown parts of the system or component (as pointed out by
one of the practitioners this is also due to the inadequacy of their tests to test
for regression). Some God Components contained files that were so tangled (i.e.
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affected by cycles) that even a simple change would have impacted several other
files.

Architecture Erosion In addition to changes rippling to external components,
participants also provided examples that the presence of smells is a sign of ar-
chitectural erosion [Perry and Wolf, 1992]: the gap between the original, intended
architecture and the actually implemented architecture, that happens due to the
continuous maintenance and evolution activities.

One of the interviewed architects explains their struggle with implementing
the parallelisation of two tasks in order to speed up the production throughput of
the whole machine. The tasks were both implemented by a certain Component
Y, which, over time, became so complex and intricate (and also contained legacy
code) that made it too difficult to proceed with the implementation of the desired
feature (i.e. parallelisation) before actually refactoring the code11.

“In your results Component Y is both a god component and a hublike depen-
dency. [...] We do have maintenance issues in that component, so we want to
split it to smaller functions because it has a lot of functionality and is quite a
drawback to scale the functionality [...]. The road map that we had for improv-
ing it is to split the component to allow us to do the two things in parallel. To
make that first step it was very painful in the short term, but once we got the
hang of it its been improving a little bit.”

This example reflects how an important evolution of the system that would provide
a tangible improvement for the customer, is hindered by: a) the centralisation of
functionality in a single component (i.e. the two tasks), which is typical of hubs;
and b) the aggregation of implementation (and legacy code), which is typical of
god components. This component was originally not meant to be so large and
complex, but erosion happened over time.

Cyclic dependencies among components were also mentioned by multiple ar-
chitects as a sign of architecture erosion. One architect mentioned an interesting
example of how cycles were creating, over time, various problems that confused
the team about what responsibilities were implemented by what component.

“We also had a famous cyclic dependency between Components Z, U, and V,
which had all kind of interesting things. Over time, sometime one controlled
the other and sometimes the other controlled the first. That always gave us
problems. So we are now actively redesigning that part to get rid of that cycle.”

11Note that the refactored version of the code was implemented in another component, which, when
it is ready, it will supersede Component Y.



94 4. The evolution and impact of architectural smells – an industrial case study

This is a textbook example of the detrimental effects of cyclic dependencies among
components on the maintainability of the system. Since the original architecture is
eroded, developers first have to reverse engineer the responsibilities of the compo-
nents at that point in time before applying the desired change to the system.

Moreover, another architect provided a very interesting anecdote about trying
to refactor one cyclic dependency, showing how hidden dependencies, and the re-
sulting complexity can ultimately have a direct impact on the company’s business.

“Last year we tried to remove a cyclic dependency by introducing a pattern
to remove part of the cycle. However, we were not aware of all the legacy
functionality within that component, and while removing the cycle, we missed
some of the dependencies. This led to a lot of escalation in the field and we had
to fly over to our customer to explain why this happened. It was actually a
combination of god component and cyclic dependency. It was a real pain and
the whole team had to work for two or three months to get it solved.”

In conclusion, all the examples mentioned in this section highlight how certain
smell types (i.e. god components, hubs, and cycles), in one way or another, hinder
the evolution – and even the refactoring – of the system and reflect its architecture
erosion, further preventing developers to deliver new functionality to the customer.

Bugs and errors Practitioners also shared stories on how certain smell types affect
the correct functioning of the system.

Cyclic dependencies, for instance, were mentioned several times (by multiple
subjects) as a type of smell that causes errors at runtime, such as deadlocks, syn-
chronisation issues of two or more tasks working together, or reduced throughput.

“For example, if we look at the cyclic dependencies in the report. And look
at the first one you see, this is basically the interaction between dose control
peripherals. Those [components] are basically sensors, and these peripherals
should only talk to [a master component] without talking between each other.
[] when you have time-critical data coming in, this can lead to some timing
errors in the field and sometimes deadlock.”

God components were also mentioned when discussing bugs and errors, though
cycles among components were more dreaded because they had a direct impact on
the observed behaviour of the system by the customer.

Communication Finally, practitioners also reported communication-related is-
sues during maintenance and evolution that they associated with the presence of
smells.
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In this company, every component has a component owner, who is responsible
of tracking changes, reviewing changes, handling questions from other owners
or developers, as well as other organisational tasks. This causes owners of com-
ponents that are essentially god components to be overwhelmed with requests
because their components implement a lot of functionality, have a lot of responsi-
bilities and a lot of other components depend on them.

Another problem in this category are code reviews of smelly components that
contain a lot of files that change. When the designers and architects meet to discuss
and approve the changes in the code reviews, several discussions and arguments
arise about the impact of each change, how to interpret the changes, and even
what customers might be affected by certain changes thus creating confusion and
ultimately delaying the development process.

4.9 Discussion

In this section we discuss the results obtained in this study and compare them to
related work. Each subsection focuses on a significant aspect of the results we
obtained from each research question.

4.9.1 Entanglement of dependencies

An interesting observation stemming from the results obtained from RQ1 is that
most of the cycles at file-level pose (in themselves) little threat to the maintain-
ability level of the system as they (a) were not associated with bugs by our prac-
titioners (unless they crossed the component border) and (b) only half of them
survive for more than a year. However, we noticed that when multiple cycles
co-exist within the same component they create an entanglement of dependencies
that ultimately affects the clarity, testability, reusability, and the ability to antic-
ipate the effects of changes of the parts affected by the cycles. In fact, Lippert
[Lippert and Roock, 2006] hinted (back in 2006) at the possibility that cycles among
files (or classes) may affect those aspects of Maintainability; the results presented
in this chapter corroborate his heuristics with empirical evidence. Our results also
align with those of Mo et al. that supported such heuristics in their industrial
study [Mo et al., 2018]. More specifically, they found that clique-shaped cycles
among files generated a considerable amount of maintenance activities in the af-
fected components. The high coupling created by the presence of several cycles
among the same group of files (such as cliques, or quasi-cliques) increases the
maintenance effort required to maintain them.
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On a similar note, Lippert had also mentioned that, while spaghetti code (i.e.
goto statements) is thought to be a thing of the past, modern software code still
presents similar structures; but, instead of occurring at function or statement level,
it involves files and components. In other words, we never really got rid of
spaghetti code’s negative effects (confusion, difficulty applying changes, inter-
twined logic, etc.); we just solved the most explicit part of the problem, the one
showing up in the code (i.e. the goto statements). Now we are facing the part of
the problem that affects the way we organise code (files and components), where
the negative effects can potentially have a larger impact. The findings of this study
show exactly this particular aspect, highlighting how practitioners struggle with
maintaining entangled files and components and need assistance to manage the
intricate structures that arise in their codebase. Therefore, we advise researchers,
to focus more on building tools and frameworks that reduce the burden of dealing
with this particular type of issues, as well as on making these means more accessible
and usable by the industry. While tools like Arcan are a first step towards this goal,
the findings of this chapter can guide research activities in this direction too. One
example stems from our results on the introduction order of architectural smells. A
machine learning tool that precisely predicts the introduction of new architectural
smells in a component could be of great value to practitioners.

4.9.2 Persistence of smells

The results of RQ1.2 show that 50% of Cyclic Dependencies do not survive more
than 10 versions after their appearance. Bavota et al. [Bavota et al., 2015] studied
the relationship between refactorings and code smells, and, surprisingly, their
findings show that only 7% of code smells are removed because of intentional
and specific refactoring activities. Should this finding be valid for architectural
smells too, it would mean that only a small percentage of architectural smells are
intentionally removed by applying refactorings. The remainder of architectural
smells may be therefore removed as part of the development activities related
to the evolution of the system. In Chapter 2, we also found that architectural
smells’ density over time is mostly constant in the long-term, meaning that as
AS are removed from the system, they are also eventually replaced by others.
Cedrim et al.’s study [Cedrim et al., 2017] report a similar percentage of code smells
(i.e. 9.7%) removed by refactorings, and, more interestingly, 33.3% of refactorings
actually resulted in the introduction of new code smells (most of which were never
removed from the code). Given our results, we could hypothesize that the same
phenomenon may also occur for architectural smells: targeted refactorings potentially
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account for the minority of the architectural smells removed over time in a system. A
possible explanation is that given the fact that architectural smells are not easy to
visualise without proper tooling, then it is hard for developers and architects to
realize what problem they are facing and thus act accordingly.

4.9.3 Comparison with Java OSS

Comparing the results obtained in RQ1 of this study with the results obtained in
our previous study on Java OSS from Chapter 2, we note both similarities and
differences.

Evolution of smells In both cases, we found that the size of the smells either
stays constant in size or increases over time while the smell density of the system
remains constant. Specifically, the size of the analysed systems (both C/C++ and
Java) grows over time which entails that AS grow both in number and in size
over time; this holds for both industrial C/C++ and Java OSS. This is an expected
result because software systems are expected to: (1) continue to grow over time
(more lines of code are added every day); and (2) increase in complexity over
time (more smells are added every day and existing smells may increase in size)
[Lehman, 1980].

One difference we observed was that for OSS projects, UD had a dominant
decreasing trend for its PageRank characteristic as in Chapter 2; this was not the
case for C/C++ systems. It is hard to objectively interpret this disparity given the
different programming languages. However, we conjecture that the open-source
community is more successful in driving the more unstable components away from
the centre of the system, where the maximally stable, core abstract components
should reside [Martin et al., 2018] and away from the implementation provided by
the external ones. It is important to note that the majority of Java OSS projects
present in our previous study from Chapter 2 were Apache projects, which are
known to follow high software quality standards.

Survivability of smells We noticed several similarities between Java OSS and the
industrial C/C++ projects we analysed. Both exhibit a trend where UD smells are
the most persistent type of smell across the projects analysed. HL smells follow
UD in second place, which in turn are followed by CD smells (GC smells were
not included in our original study). Additionally, HL smells among components
are more persistent than HL smells among files and cycles among components
were less persistent than cycles among files in both types of systems. Given these
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similarities, we can conclude that different architectural smell types exhibit the
same pattern of persistence regardless of the type of system they are detected in.

However, we also noticed one important difference between the smells detected
in Java OSS and C/C++ industrial systems: all smell types exhibit longer lifespans in
the industrial systems. This aligns with the feedback collected from our interviews
with ASML engineers (see Section 4.8.2): making changes is hard, they require a
lot of coordination between teams, certifications, code reviews, and a lot of effort in
general. The way ASML defines dependencies among components may also have
had an impact on the survivability of smells. ASML components use a custom
mechanism to expose their interface to other components. Thus, if a component
communicates with another component through that interface, it is very likely that
the dependency between those two components is there by design and not acci-
dental or involuntary. This implies that it is less likely for that dependency to be
removed in the future, and thus all smells relying on that dependency (e.g. like a
cycle) will keep existing. Ultimately, this custom mechanism, and the rigorous en-
gineering processes between and within teams translate into an increased amount
of time necessary to make a complete change to the system, which is also reflected
in our data.

Finally, cycle shapes also exhibit the same patterns identified for Java OSS
systems. We especially observed that tiny cycles are outliving all other shapes
in both types of systems, showing how this shape is very likely to be intentional
and/or less harmful than the other types of cycle shape.

4.9.4 Overlaps

The results obtained from RQ2 show that, except for a few outliers, all smell types
are likely to overlap, amplifying their impact on maintainability and evolvability
and giving components more than one reason to change, thus breaking the Single
Responsibility Principle (SRP) [Martin et al., 2018].

Our conversations with practitioners from RQ5 provide evidence to support
this very claim, as they mentioned multiple examples where they associated two
or more smells with the maintenance issues they were experiencing. These results
emphasise the importance of handling overlaps between architectural smells and,
more importantly, preventing their introduction in the first place.

From our quantitative analysis emerged that cycles are pervasive in the system
and they tend to appear as precursors to other smell instances, as they exhibit a
high precedence rate (with k = 1). This could mean that the presence of cycles in
the system is likely to ease the introduction of other smells. As a result, other smell
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types tend to have a high overlap rate (from 52% to 77% of instances, depending on
the smell type) with cycles. On the other hand, HL instances exhibit the opposite
behaviour and have a low precedence rate but a rather high overlap with other
smell instances (59% to 77% of HL instances). This gives us an insight about the
interplay between architectural smell instances of different types. Cycles act as
catalysts for more complex structures, such as HL, to arise and negatively affect the
maintenance of the affected components and files. There were plenty of occasions
where we observed star-shaped (see Figure 4.8b) cycle instances of which central
element was also affected by a HL instance. Indeed, in our RQ3 results, one of the
drawbacks of a Hublike Dependency smell is that it aggregates responsibilities that
it either delegates or implements itself, which breaks the SRP principle and impacts
negatively maintainability. For UD instances, on the other hand, tightly coupled
structures such as cycles have an inherently high instability [Martin et al., 2018],
which in turn reflects to the component depending on them, thus creating an UD
instance. Understanding how and why CD instances are precursors to other smell
instances is an interesting opportunity for future work.

4.9.5 Feedback from practitioners

From the results of RQ4, we found that AS analysis is quite useful to practition-
ers, especially for monitoring purposes, rather than identification: practitioners are
mostly aware of the hotspots in their systems but they do need assistance in tracking
and quantifying their presence deterministically. Interestingly, these findings match
what Mo et al. [Mo et al., 2018] encountered but partially contrast the findings
of Martini et al. [Martini et al., 2018a], as in their case, practitioners were mostly
unaware of the architectural smells in their system but found the information pro-
vided by smells still useful.

A possible explanation for this discrepancy is the fact that most of our partici-
pants have a long experience working for the company: they worked as developers
for a long time in a project before becoming architects (or senior developers) of the
same project. This means that they have a much more in-depth understanding of
the problems in their system, so the information provided by a tool can mostly
confirm this understanding. We can only conclude that the level of awareness of
developers of the smells in their system varies from subject to subject. In fact,
a recent study on the topic [Arcelli Fontana et al., 2020] showed that developers’
awareness of smells ranges from 26% of all the smells detected in the system up to
78%, depending on the participant. This has a clear implication for researchers: if
they are able to show the same information that a senior developer (or architect)
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is already familiar with, to all members of the team, regardless of their experience,
then architectural smell analysis does provide an added value to the team.

Another common finding with Mo et al.’s work [Mo et al., 2018] is the feedback
of practitioners concerning the created reports. Similarly to our study, Mo et al.
also prepared reports that summarized the results to the developers and architects
of the system. These were very much appreciated by the developers and engineers
in the companies of the two studies, and as a result, both companies showed
interest in creating an integration with their own CI/CD to automate the analyses
and provide daily (or weekly) reports.

One finding that was not reported by the subjects interviewed by Mo et al. is
that our practitioners also highlighted the usefulness of our reports to new team
members, and how they allow an easy transfer of knowledge to the less experienced
members.

4.9.6 Applying changes to the codebase

The results of RQ5 show that practitioners struggle to maintain the components
affected by architectural smells in a sustainable way. The main reasons include
change propagation and the effects of a change in unknown parts of the codebase,
during both typical maintenance (i.e. bug fixing, adaptations to new technologies)
and evolution (addition of new features) tasks. Previous studies from the literature
corroborate these findings with data extracted by mining software repositories. Le
et al. [Le et al., 2018] found evidence that in open-source Java systems the presence
of architectural smells correlates with change-prone artefacts. Similar findings were
also reported by Oyetoyan et al. [Oyetoyan et al., 2015] on circular dependencies
specifically.

The study of Vaucher et al. [Vaucher et al., 2009] looked at the change proneness
of God Classes, and showed that some God Classes are significantly less change-
prone because they exist by design. While their findings refer to a different type of
artefact (i.e. a code smell that is similar to GC but not exactly the same), they offer
an insight on why some of the subjects we interviewed dismissed God Components
as less detrimental (than other GCs). Specifically, God Components that are made
by design are more easily understood by practitioners, because they understand
their design and are thus better able to handle their complexity.

We can thus conclude that change-prone artefacts and architectural smells are
highly correlated as this relation has been identified both quantitatively and qual-
itatively as well as independently by different studies. This strengthens the evi-
dence about the increased effort required to maintain artefacts affected by architec-
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tural smells and highlights the importance for practitioners to manage architectural
smells.

Mo et al. also report about the experiences of developers when dealing with
ripple effects [Mo et al., 2018]. For instance, Mo et al. report on how developers
consider the risk of performing a change to a file and that sometimes this is under-
estimated. This is corroborated by our findings. However, we also provide extra
information about the ramifications caused by changes both at a company level
(impacting several other teams) but also about the shortcuts that developers take
in order to avoid the risks imposed by those changes. As an example for the latter
case, some developers admitted to intentionally duplicating entire files in order to
avoid impacting other files with their changes.

4.10 Implications for practitioners

Our results can help software engineers and architects to become aware of the side-
effects associated with the presence of architectural smells within a large embedded
systems company such as ASML. Particularly, a few key points that practitioners
should consider are the following:

• the importance of continuously monitoring the presence of cycles among
components/packages, as stated by the Acyclic Dependencies Principle
[Lippert and Roock, 2006]. Practitioners should especially oversee the com-
ponents (or packages) that exhibit an excessive amount of internal cycles, as
these may severely degrade the overall maintainability of the component. On
top of that, we also found that cycles are catalysts for other smells to arise;

• the appearance of a Hublike Dependency may be a clear signal that the
affected part requires some refactorings, given that, as we found, this type of
smell is likely to appear after other smells already affect a component. Cedrim
et al. [Cedrim et al., 2017] found that the most effective refactorings are the
ones that target aggregator-like smells (such as Hublike Dependency and
God Component), therefore this is a clear actionable point for practitioners;

• the experiences shared by ASML engineers can provide insightful details
to other practitioners to avoid incurring similar issues such as change ripple
effects, architecture erosion, and communication bottlenecks. To this end,
practitioners should stick to architectural principles [Martin et al., 2018] and
guidelines and avoid the presence of severe architectural smell instances;
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• the integration of historical change-related information of the components
into decision-making processes through dashboards and reports. Our find-
ings show that recurring changes are often associated with the presence of an
architectural smell. Repairing artefacts that are commonly subject to mainte-
nance work may ease the extra burden required to implement new features
or fix bugs on the long-term.

4.11 Threats to validity

We identified the potential threats to validity for this study and categorised them
using the classification proposed by Runeson et al. [Runeson et al., 2012]: construct
validity, external validity, and reliability. Internal validity was not considered as we
did not examine causal relations [Runeson et al., 2012].

Construct validity This aspect of validity reflects to what extent this study mea-
sures what it is claiming to be measuring [Runeson et al., 2012]. To ensure we
measure how AS evolve and how practitioners experience AS, we developed a
case study using a well-known protocol template [Brereton et al., 2008] that was
reviewed by the first two authors and an external researcher. Several iterations
were made to ensure that the data to be collected would indeed be relevant to the
research questions.

A possible threat to construct validity is the correctness of the parsing algo-
rithm for the proprietary parts of the C/C++ compiler adopted by the company of
this study. To mitigate this threat, we manually validated the parsing algorithm
with a list of well-known files and components that had dependencies defined by
proprietary constructs in the code. The whole process was also supervised by one
of the architects taking part in the study.

Another threat concerns the detection of the smells considered in this
project, which depend on the implementation offered by Arcan. Lefever et al.
[Lefever et al., 2021] have shown that different tools for technical debt measure-
ment (including DV8, CAST, and SonarQube, but not Arcan) have divergent, if
not conflicting, results regarding which files are problematic in a system. This is
due to the fact that different tools make different assumptions, use different def-
initions of a smell, and have different implementations of how to detect a smell
[Lefever et al., 2021]. Therefore, we can only state that our quantitative results ob-
tained through Arcan may not be fully comparable with the results obtained by
other tools. However, this would be the case even if we used any other tool, as shown
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by Lefever et al. [Lefever et al., 2021]. Having said that, this threat can be consid-
ered partially mitigated, as the definitions of each architectural smell used by Arcan
are based on independent, previous work. In particular, CD is based on the Acyclic
Dependencies Principles [Martin et al., 2018, Lippert and Roock, 2006], HL and
UD on the definitions provided by [Samarthyam et al., 2016, Martin et al., 2018],
and GC on Lippert’s definition [Lippert and Roock, 2006] (further improved upon
by the authors of Arcan). This cannot be said for other tools available, as
many of them are based on previous work of the very authors of the tools,
and therefore may potentially be biased. Moreover, to guarantee that the re-
sults obtained by the Arcan tool are indeed in line with the definitions pro-
vided by previous work, the tool was used and evaluated in a number of studies
[Arcelli Fontana et al., 2016, Biaggi et al., 2018, Sas et al., 2019].

Yet another threat concerns the methodology we used to select the subjects for
the interviews. Instead of using a probabilistic approach (i.e. random sampling)
to sample our subjects, we sampled them based on convenience and circumstance.
This was mainly due to two factors. First, it was up to the architects of each team
to approve the interviews with their engineers. Second, we could not interview
subjects from all of the projects we analysed, as not all project architects were willing
to provide participants. Nonetheless, we managed to interview a good number of
subjects, with more than one person per project in almost all cases, different levels
of seniority and a balance in roles. Therefore, we consider this threat as, at least
partially, mitigated.

External validity This aspect of validity reflects to what extent the results obtained
by this study are generalisable to similar contexts.

External validity is limited by the fact that we only analysed the projects be-
longing to a single company with its primary business focused on a single domain.
The threat is partially mitigated by the fact that our quantitative results corrobo-
rate previous findings from open-source systems: even though we only studied
architectural smells in one, specific context, the findings have good chances to be
applicable to other contexts as well. Our qualitative results, on the other hand, can
be applicable to large companies that employ a similar development process such
as the company subject of this study.

Another threat to the generalisation of our results is the fact that the studied
projects are part of a software product line composed of several products (ma-
chines). This poses the risk of limiting the applicability of our results to the specific
context of companies that develop software product lines. The risk arises because
architects and engineers must take into account the reuse of their code in different
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products with different hardware configurations, which may not be the case for
many other companies. To mitigate this risk, we focused our attention on issues
that can occur independently of the practices adopted to develop and manage the
software assets of the company. For instance, during our interviews, we obtained
a few data points mentioning reusability-specific issues encountered by engineers,
however, we opted to only include in our results those that are potentially appli-
cable to other contexts in order to not limit external validity.

Reliability Reliability is the aspect of validity focusing on the degree to which
the data collection and analysis depend on the researchers performing them.

While we cannot share our dataset for confidentiality reasons, we do, however,
provide a replication package12 containing a complete version of the study design
of this study and a sample of the report we sent to our practitioners to allow
researchers to reuse similar data visualisations in their future work. Moreover, the
tools used in this study are freely available online13 to allow other researchers to
assess the rigour of the study or replicate the results using a different set of projects.

Another threat to reliability is the bias towards the data introduced by the
researcher performing the coding. This threat was mitigated by having a second
researcher inspect both the codes and the coding maps extracted during each round
of coding. All the feedback received was then integrated and the subsequent coding
sessions adopted the updated codes. The analysis was also performed using well-
established techniques already used in previous work on the same topic as well
as also in different fields (e.g. survival analysis, in the biomedical sciences field).
Therefore, we consider this threat mitigated.

4.12 Conclusion

In this chapter, we presented the results of an empirical embedded multiple-case
case study performed using both quantitative and qualitative data. The data was
collected by statically analysing 280 releases (spanning almost 3 years) across 9
industrial projects and by interviewing 12 subjects responsible for developing and
architecting the projects under consideration.

To collect the quantitative data, we used a tool called Arcan to mine archi-
tectural smells (and their characteristics) from the over 20 millions lines of code

12Visit https://doi.org/10.6084/m9.figshare.16884739.v1.
13See https://github.com/darius-sas/astracker and https://gitlab.com/essere.lab.

public/arcan.

https://doi.org/10.6084/m9.figshare.16884739.v1
https://github.com/darius-sas/astracker
https://gitlab.com/essere.lab.public/arcan
https://gitlab.com/essere.lab.public/arcan
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available to us. We then used different techniques to study the evolution of the
architectural smells and understand how they evolve over time, how long they
persist within the system depending on their type, and how they overlap with
each other. The findings show that smells grow over time in size, and that most
of the detected instances do not persist for more than 2-3 releases. Moreover, most
smell types were found to have high percentages of overlap with other smell types,
meaning that it is not uncommon for components to be susceptible to problems
caused by multiple types of smells, as also highlighted by our subjects during the
interviews.

Indeed, practitioners found that our results aligned with their intuitions of
where the issues were located and commented that tooling that helps them man-
age AS could be quite useful to them. During the interviews, practitioners also
mentioned rather interesting experiences where they struggled maintaining com-
ponents affected by architectural smells, thus providing evidence of the negative
effects of AS on Maintainability.

In conclusion, this chapter provides a much clearer, and backed by empirical
evidence, view on the issues experienced by practitioners in the presence of AS.
One aspect that was of particular concern for many practitioners was the change
ripple effect that was associated with the presence architectural smells. In the
upcoming chapter, we designed a case study to investigate the relation between
architectural smells and source code changes from several points of view using
statistical analysis.
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Chapter 5

The relation between architectural smells and
source code changes

Before software should be reusable, it should be usable.

— Ralph Johnson (GoF)

Abstract

While architectural smells are one of the most studied type of Architectural
Technical Debt, their impact on maintenance effort has not been thoroughly
investigated. Studying this impact would help to understand how much tech-
nical debt interest is being paid due to the existence of architecture smells and
how this interest can be calculated.

This work is a first attempt to address this issue by investigating the relation
between architecture smells and source code changes. Specifically we study
whether the frequency and size of changes are correlated with the presence
of a selected set of architectural smells. We detect architectural smells using
the Arcan tool, which detects architectural smells by building a dependency
graph of the system analysed and then looking for the typical structures of the
architectural smells.

The findings, based on a case study of thirty-one open-source Java systems,
show that 87% of the analysed commits present more changes in artefacts with
at least one smell and the likelihood of changing increases with the number
of smells. Moreover, there is also evidence to confirm that change frequency
increases after the introduction of a smell and that the size of changes is also
larger in smelly artefacts. These findings hold true especially in medium-large
and large artefacts.



108 5. The relation between architectural smells and source code changes

5.1 Introduction

Architectural smells (AS) are defined as “commonly-used (although not always inten-
tional) architectural decisions that negatively impact system quality” [Garcia et al., 2009].
AS manifest themselves in the system as undesired dependencies, unbal-
anced distribution of responsibilities, excessive coupling between components
as well as in many other forms that break one or more software design prin-
ciples and good practices, ultimately affecting maintainability and evolvability
[Lippert and Roock, 2006]. We note that the presence of AS does not always in-
evitably indicate that there is a problem, but it points to places in the systems
architecture that should be further analysed [Lippert and Roock, 2006]. Architec-
tural smells are considered as a type of architectural technical debt (ATD), as they
(may) result in increased complexity and “can make future changes more costly or
impossible” [Avgeriou et al., 2016]. The interest of the research community in AS
has grown exponentially over the past years: according to a systematic mapping
study by Verdecchia et al. [Verdecchia et al., 2018], they are one of the most studied
types of architectural technical debt.

Research work on AS has ranged from broad studies that define new
smell types and study their evolution over time [Arcelli Fontana et al., 2016,
Oyetoyan et al., 2015, Le et al., 2015], to more specific ones that focus on a par-
ticular architecture style (e.g. AS in systems built with Model-View-Controller, or
Microservices [Neri et al., 2019]). Few studies, however, have extensively investi-
gated the impact of AS on maintenance effort. While AS are considered detrimental
to software maintenance, forcing developers to pay high technical debt interest
[Garcia et al., 2009], there is little empirical evidence to explore and confirm this
phenomenon. Although there has been research on the impact of code smells on
maintenance effort, architectural smells seem completely independent from code
smells [Arcelli Fontana et al., 2019b], and arguably more severe.

This study addresses this gap by exploring the impact of a specific set of AS on
maintenance effort in terms of the actual changes made by developers to the source
code. Specifically, we compare the frequency and size of changes between source
code artefacts affected and not affected by architectural smells. We perform the
comparison both by controlling for the size of the artefacts and without any control
for size, to eliminate size as a confounding factor. We consider change frequency,
i.e. the number of times an artefact was changed across multiple versions, and
change size, i.e. the number of lines of code added, deleted, and modified1, as
proxies of the effort spent, based on previous work: change frequency is a factor

1See Section 5.4 for a full description.
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that was found to affect maintenance effort [Sjoberg et al., 2013, Olbrich et al., 2009],
whereas change size (also referred to as code churn, or Total Amount of Changes -
see Section 5.4) was used to estimate the effort in previous studies [El-Emam, 2000,
Mockus and Votta, 2000]. This can give an indication of how much technical debt
interest (rather than the actual interest per se) is paid by developers due to the
presence of the detected smells (not all changes entail paying interest - see Threats
to Validity section). Furthermore, our findings can be used towards building a
model to calculate, based on actual changes, the ATD interest [Avgeriou et al., 2016]
paid when maintaining artefacts affected by AS.

The architectural smells considered in this study are Cyclic Dependency
(CD), Hub-Like Dependency (HL), Unstable Dependency (UD), and God Com-
ponent (GC) [Arcelli Fontana et al., 2016, Lippert and Roock, 2006, Sas et al., 2019]
(see Chapter 2.3 for their description). We selected to study these smells as they
are some of the most prominent architecture smells, and there already exist tools
that provide their automatic detection.

The novel contributions of this study are: (1) the vast majority of related work
examines code smells, while we focus on architectural smells, which were found
to be independent from code smells [Arcelli Fontana et al., 2019b]; (2) we study 4
different types of AS, and only CD were previously investigated by other studies,
whereas the other three were overlooked; (3) we provide a new, interesting view
of how AS affect artefacts before and after the introduction (RQ2).

The rest of the chapter is structured as follows: Section 5.2 summarises similar
work from the literature; Section 5.3 describes in detail the goals, research questions
and the selected projects of this study; Section 5.4 reports the data collected as
well as the collection process; Section 5.5 presents the data analysis procedures;
Section 5.6 reports and examines the obtained results; Section 5.7 discusses our
interpretation of the results and compares them with similar findings from the
literature; Section 5.8 enunciates the threats to the validity of this study; and finally,
Section 5.9 concludes the chapter.

5.2 Related work

5.2.1 Impact of Architectural Smells

In a recent work, Le et al. [Le et al., 2018] defined a set of six architectural smells
based on an automated reverse architecture model extraction. Next, they investi-
gated whether files affected by architectural smells (i.e. smelly files) are more likely
to have issues (extracted from issue-tracking systems) associated to them than clean
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files. Additionally, they also checked if smelly files are more change-prone than
clean files. The case study was performed on eight different open-source Java sys-
tems and the results confirmed that smelly files are more fault- and change-prone
in the eight systems analysed. Contrary to the work of Le et al. [Le et al., 2018],
in our work we investigate a different set of architectural smells based on concrete
software artefacts, rather than on architectural recovery views; we use thirty-one
projects, rather than eight; and we measure several facets of change-proneness (not
only the number of commits a file has changed), using a well-established suite of
metrics.

Oyetoyan et al. [Oyetoyan et al., 2015] have studied the relation between Cyclic
Dependency (CD) and the change frequency of the affected classes near them on
twelve Java open-source systems. They investigated both general CD between
classes and special kinds of CD (e.g. cycles that contain both parents and children
classes, abbreviated as STK, and cycles across branches of the package containment
tree) that have been conjectured to be particularly undesirable. Their results show
that the presence of cycles does increase the change frequency of the classes affected
and of the neighbour classes, but this is not true for classes affected by STK cycles in
most of the systems considered. Moreover, their findings also suggest that classes
belonging to cycles spanning across branches of the package containment tree (the
tree of the packages) do not exhibit a higher correlation with change frequency.
Our work differs from this study in the following aspects: we investigate four
types of smells, including CD, both at class and package level; our data includes
more systems and more commits per system; and we use multiple well-established
metrics to measure change.

5.2.2 Impact of Anti-patterns, Design Patterns, and Design Smells

Khom et al. [Khomh et al., 2012] investigated the effect of antipatterns (classes
that embody poor design choices and stem in-between design and implementation
[Khomh et al., 2012]), on class and change proneness. More specifically, the authors
investigated whether classes participating in antipatterns have a higher likelihood
than others to change or be involved in issues documenting faults. Their study
focused on four open-source Java systems and a total of fifty-four releases. Their
findings confirmed that classes participating in antipatterns are more change prone
than others. Specifically, the MessageChain antipattern has been found to consis-
tently have the greatest impact on change proneness across all the four systems
analysed. The impact of the other antipatterns largely depends on the studied sys-
tem. Concerning fault proneness, the results are very similar to what was observed
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for change proneness.
Another work on antipatterns and their relation with changes and faults was

published by Jaafar et al. [Jaafar et al., 2016]. In their work, rather than focusing on
problematic classes as previous studies, they focused on classes that depend upon
classes affected by antipatterns and/or participate in design patterns. Their work
focused on six design patterns and ten antipatterns detected throughout thirty-nine
releases of four systems. The findings indicate that classes having dependencies
with antipatterns are more prone to fault, while this is not always true for classes
with dependencies with design patterns. Additionally, the findings also show that
classes depending upon antipatterns are more prone to logic faults and structural
changes, whereas classes depending on design patterns are more prone to code
addition and syntax faults.

Sharma et al. [Sharma et al., 2020] conducted an empirical study to investi-
gate the relationship between design and AS in C# projects, where what they
call design/architectural smells correspond to our distinction class/package smells.
They studied correlation to check whether, given pairs of design and architectural
smells which capture the same concept at different granularities, one of the two
is superfluous. They studied collocation and causation, by investigating temporal
relationship between design and AS to figure out whether some types of smells
cause the others. Thanks to their analysis, they found evidence of the individuality
and uniqueness of design respect to AS.

5.2.3 Impact of Code Smells

Aniche et al. [Aniche et al., 2018] have studied the impact of code smells on change
and fault-proneness in Model-View-Controller (MVC) architectures prior to per-
forming a qualitative analysis involving the developers of the 120 projects they
considered. The projects were automatically extracted from GitHub, and the au-
thors defined a set of smells specifically tailored for the MVC architecture by
surveying 53 developers. The results concerning change and fault proneness show
that classes affected by smells are more prone to change than non-smelly classes;
traditional smells seem to have a stronger negative impact, although when con-
trolling for size the difference is less marked on change proneness. No impact was
observed on fault proneness when controlling for size for both MVC-specific and
traditional smells.

Another study on code smells and change-proneness was done by Khomh et
al. [Khomh et al., 2009]. In their work, the authors study the impact of 29 code
smells on change proneness in 2 open-source Java projects. More precisely, they
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Context 1 (Domain)

Case 1 (Project)

Unit of Analysis
Unit of AnalysisUnit of Analysis

(Java Source File or
Package)

Context 2 (Domain)

Case 2 (Project)

Unit of Analysis
Unit of AnalysisUnit of Analysis

(Java Source File or
Package)

Figure 5.1: The case study design using Runeson et al.’s representation
[Runeson et al., 2012].

investigate whether smelly classes are more change-prone, how the number of
smells influences this aspect, and differences in this impact between the different
smell types. Their findings show that smelly classes are in fact more change prone
in both projects analysed. Additionally, they also show that a higher number
of smells often implies a high change proneness. They also found that HasChil-
dren, MessageChainClass, NotAbstract, and NotComplex smell types have the highest
change proneness, but this is heavily project-dependant.

This study, in contrast, focuses on architectural smells, and as it was found
in a previous study, architectural smells are independent from code smells
[Arcelli Fontana et al., 2019b]. Moreover, architectural smells, contrary to code
smells, affect multiple classes and/or packages, have complex structures (e.g. de-
pendencies among the affected components), and require large refactorings in
order to be removed [Lippert and Roock, 2006]. This means that research on code
smells is not applicable to architectural smells, and the only similarity with code
smells in this regard is that each type of architectural smell needs to be investigated
individually.

5.3 Case study design

The present study is designed and reported following the guidelines published by
Runeson et al. [Runeson et al., 2012]. Specifically, the case study design follows
an embedded multiple-case format: multiple cases, each having numerous units
of analysis, as shown in Figure 5.1. The individual source code files and packages
analysed for a given project constitute the units of analysis; the projects represent
the cases. The domain of the project (e.g. web service, database, etc.) is the context,
containing one or multiple cases.
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5.3.1 Terminology

In the next sections, we will use the term change frequency to indicate the number of
times an artifact undergoes any kind of change in a given number of commits. For
example, if an artefact changes in 3 commits out of the 100 considered, its change
frequency is .03.

The term change size refers to the sum of the number of lines of code added,
deleted, and/or modified to/from an artefact in a single given commit. This is
commonly referred to as code churn. A formal definition of how we measure
changes is provided in Section 5.4.

Finally, we note that we use the terms commit and version interchangeably.
Additionally, the term release is used when a certain commit/version is explicitly
packaged and tagged for public release.

5.3.2 Goal and Research Questions

The goal of this study is to understand the impact of architectural
smells on source code changes. Using the Goal-Question-Metric approach
[van Solingen et al., 2002], the goal can be formulated as follows:

Analyse changes in source code artefacts for the purpose of understanding
the impact of architectural smells with respect to the frequency and size of
those changes from the point of view of software developers and architects
in the context of open-source Java software systems.

By (Java) source code artefacts we mean both source code files (classes) and source
code packages.

The goal can be broken down into three main research questions, as follows.

RQ1 Do classes and packages with smells change more frequently than classes and
packages without smells?

RQ1a Do different smell types have a different impact on frequency of change?

RQ1b Does the number of smells have a different impact on frequency of
change?

We ask this question to shed some light on the actual relationship between the exis-
tence of architectural smells and the change frequency of classes and packages. Such
a relationship, in case it exists, confirms that architectural smells’ presence correlate
with increased maintenance effort, with respect to the frequency of changes of the
affected artefacts.
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The two sub-questions, RQ1a and RQ1b, further explore the connection between
architectural smells and change frequency by looking at how different smell types
and multiple smells correlate to changes.

RQ2 What is the difference in the change frequency of an artefact before and after
a smell is introduced?

This question aims at identifying whether the introduction of a smell impacts
the change frequency of a certain artefact. More precisely, it provides insights on
whether the presence of the smell can be related to an increased change frequency
in an affected artefact. Theoretically, one would expect that the introduction of a
smell leads to an increase in the change frequency in (at least some of) the artefacts
affected by the smell. Finally, the results of this research question, in case we do
find evidence of such an increase, will strengthen the findings of RQ1.

RQ3 Is the size of the changes in source code artefacts affected by smells, larger
than in non-affected artefacts?

This question focuses on the magnitude, or size, of the changes made (in terms
of added, deleted, and changed lines of code) to the artefacts that are affected
by smells. Theoretically, these artefacts should exhibit bigger changes (thus more
complex ones) because working on an sub-optimal design is harder and thus re-
quires changing more lines of code to be maintained. Bigger changes, in most
scenarios (e.g. fixing bugs, adding features, refactoring, etc.), mean developers
have spent more time to implement them, resulting in a higher amount of interest
paid [El-Emam, 2000, Mockus and Votta, 2000].

We emphasize that, with these research questions we are not seeking to es-
tablish causality between smells and changes by any means, but rather we aim
at investigating correlations. This is further explained in the Discussion section
(Section 5.7).

Finally, a replication package, containing the protocol, the data, the R scripts,
and a collection of 14 plots that visualise the data, is available online2.

5.3.3 Analysed Projects

To conduct our study, we selected the thirty-one projects listed in Table 5.1. The
inclusion criteria used during the selection of the projects were:

1. Non-trivial Java projects with at least 10, 000 lines of code in the last commit;

2Visit https://doi.org/10.5281/zenodo.4897281 to download the replication package.

https://doi.org/10.5281/zenodo.4897281


5.4. Data Collection 115

●●●●●●●●●●●● ●●●●●●●●●
●●●●●●●●
●●●●●●

●●●●●●

●●●
●

●

●

●
●●● ●●

●●●●●●●●

●●●
●●●●● ●●●●●●●●●●●●●●●●●

●

● ●●● ●●●●●●0e+00

2e+05

4e+05

6e+05

ac
cu

m
ulo

ac
tiv

em
q

an
t−

ivy

ca
lci

te

ca
ss

an
dr

a

ch
uk

wa
dr

uid

ela
sti

cs
ea

rc
h

fas
tjs

on
gs

on

gu
av

a

ht
tp

co
m

p.

jac
kr

ab
bit

jac
ks

on jen
a

jen
kin

s jgi
t

jsp
wiki

lib
gd

x

luc
en

e
m

ina

pd
fb

ox

pg
jdb

c
po

i

re
tro

fit

se
len

ium

sp
rin

g−
bo

ot

str
ut

s

te
stn

g
tik

a

xe
rc

es
2

Projects

To
ta

l L
in

es
 o

f C
od

e 
in

 c
om

m
its

Figure 5.2: The distribution of the total number of lines of code of each version for
each project.

2. Actively maintained and used by the community (the Contributors page on
GitHub should show a consistently active development3);

3. At least 3 years of active development on GitHub (or similar sites);

During the selection process we also strove to diversify the domains of the included
systems as much as possible, as indicated in Table 5.1, as well as to increase as
much as possible the period of analysis taken into consideration. To this end,
our dataset contains thirty one projects, with an average period of analysis of 11.5
years, a maximum of 22.1 years, and a minimum of 3.5 years with an average of
126.8 commits analysed per project. Figure 5.2 reports the distribution of the total
number of lines of code of the commits analysed for each project.

5.4 Data Collection

For every system S listed in Table 5.1 we analysed one commit (or version) v
every 4 weeks, from the first commit available in the repository to the latest on
the main branch (either master or trunk). We selected a 4-week-long interval
between each commit because we wanted to ensure that the change-related met-
rics we selected were calculated at a meaningful level of granularity, allowing
enough files to change from one commit to the next one. Such custom inter-
vals were used in similar contexts by previous studies [Nagappan and Ball, 2007,

3See for example Accumulo’s page https://github.com/apache/accumulo/graphs/contributors
for an example of actively-developed project.

https://github.com/apache/accumulo/graphs/contributors
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Table 5.1: Demographics of the projects analysed in this study. Note that dates
refer to the period of analysis taken into consideration, not age of the system.
Additionally, the categories are only indicative.

Category Project
# Commits
analysed 1st/last commit

KLOC 1st-
last commit Description

Data storage
and
Management

accumulo 99 12-2011/ 11-2019 193 - 237 Data Storage System
calcite 81 11-2014 / 5-2021 109 - 187 Dynamic Data Management
cassandra 136 4-2009 / 11-2019 36 - 178 Distrib. NoSQL database
chukwa 73 10-2008 / 4-2019 8 - 31 Data Collection
jackrabbit 155 12-2006 / 11-2019 94 - 241 Content Repository
jackson 93 2-2012 / 11-2019 31 - 59 Data Binding Library

Web engines
and Web Tools

httpcomp. 126 2-2006 / 10-2019 0 - 33 HTTP Toolset
jspwiki 186 8-2001 / 11-2019 1 - 32 Wiki Engine
retrofit 51 6-2015 / 6-2020 3 - 10 Android HTTP client
spring-boot 47 10-2017 / 5-2021 91 - 143 Spring-based project manager
struts 158 4-2006 / 11-2019 24 - 41 Web Apps Framework

Search Engines

elasticsearch 49 7-2015 / 3-2019 295 - 614 Search engine
jena 95 6-2012 / 11-2019 209 - 348 Semantic Web
lucene 173 10-2001 / 8-2015 5 - 453 Search Engine
tika 144 8-2007 / 11-2019 2 - 63 Content Analysis Toolkit

Development
Tools

ant-ivy 130 7-2005 / 11-2019 10 - 42 Dependency Manager
jenkins 186 12-2006 / 5-2021 14 - 125 Automation server
jgit 123 11-2009 / 11-2019 18 - 113 Java implementation of Git
selenium 132 2-2011 / 5-2021 2 - 53 Automation web libraries
testng 147 9-2006 / 10-2019 13 - 59 Testing Framework

Document
Manipulation

pdfbox 137 8-2008 / 11-2019 26 - 82 PDF Library
poi 206 3-2002 / 11-2019 19 - 99 MS Office API
xerces2 189 1-2000 / 7-2019 36 - 116 XML Library

JDBC Drivers druid 99 6-2011 / 11-2019 42 - 85 Alibaba JDBC Library
pgjdbc 211 9-1997 / 11-2019 2 - 30 PostgreSQL JDBC driver

Networking
and Messaging

activemq 161 1-2006 / 11-2019 61 - 177 Message Server
mina 120 3-2005 / 6-2019 6 - 28 Network Framework

Game Engine libgdx 139 4-2010 / 5-2021 23 - 222 Game engine

Data Binding fastjson 104 9-2011 /5-4-2021 12 - 41 Alibaba JSON data mapper
gson 99 9-2008 / 5-2021 6 - 10 Google JSON data mapper

Utility guava 83 1-2010 / 7-2019 33 - 117 Google Core Library
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Kouroshfar et al., 2015, Arcelli Fontana et al., 2019a]. Additionally, a fixed interval
between commits, avoids the introduction of bias and ensures the results are con-
sistent across the different release rates of our projects [Kouroshfar et al., 2015]. The
selection of the 4-week-long interval is further discussed in the Threats to Validity
Section. The change-related data were extracted using git diff between each
pair of consecutive commits. The period of analysis started from the first ever
commit available on the repository to the last one available as of May 2021. Next,
as part of our data cleaning process, we removed the commits with no changes at
the beginning and ending of a project, as these entail inactive leading and trailing
periods.

For every artefact x, namely class c or package p, in each commit v we collected
the following independent variables: (1) a boolean variable denoting whether x
was affected by architectural smells or not, (2) four boolean variables indicating
whether a certain type of smell affects x, (3) and an integer variable counting the
total number of smell instances per smell type that affected it. We also measure, for
every artefact x the changes in the system using a well-established suite of metrics
provided by Elish et al. [Elish and Al-Khiaty, 2013] – these are the dependant
variables in our study:

1. Change Has Occurred (CHO). This metric is the basis for calculating the
change frequency of an artifact. CHO measures whether a class c, or package
p, has changed or not in the current commit v with respect to the previous
commit v − 1 in the dataset:

CHOv(c) =

1 if c has changed in v

0 otherwise
CHOv(p) =

p∨
c∈p

CHO(c)

Note that to calculate CHO for a package p (i.e. right-most formula) we do a
binary sum (i.e. binary OR) between all the elements c directly contained in
p.

2. Percentage of Commits a Class has Changed (PCCC). This metric computes
the change frequency of an artefact using CHO and is represented as a per-
centage to normalise it. The metric was described and used in previous
studies [Arvanitou et al., 2017, Zhang et al., 2013] and is basically the FRCH
metric defined by Elish et al. [Elish and Al-Khiaty, 2013] but normalised as a
percentage.

PCCCa
b(x) =

∑b
v=a CHOr(x)

b − a
× 100
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where v is the commit for which CHO is computed, and [a, b] is the interval
of commit indexes considered. Intuitively, this metric counts the number
of commits where an artefact has undergone changes and divides it by the
number of commits in the period considered.

3. Total Amount of Changes (TACH). Also called change size, or code churn, is
the sum of added lines of code (NAL), deleted lines (NDL), and twice the
changed lines (NCL) since the last commit[Elish and Al-Khiaty, 2013] for a
given class c or package p:

TACH(c) = NAL(c) + NDL(c) + 2 ×NCL(c) TACH(p) =

p∑
c∈p

TACH(c)

The calculation of TACH for packages is simply the sum of TACH for each
class c directly contained in p.

To collect the data, we used a combination of two tools: Arcan
[Arcelli Fontana et al., 2016] and ASTracker, see Chapter 2. Arcan collected the
artefacts affected by architectural smells in each selected commit in the history of
the systems directly from the source code files. The output of Arcan is a graph file
containing the dependency network of the commit analysed, including the smells
detected. The algorithms used to detect architectural smells are explained in detail
by Arcelli et al. in their paper [Arcelli Fontana et al., 2016]. The detection is based
on the software design principles reported by Martin [Martin et al., 2018] and Lip-
pert [Lippert and Roock, 2006]. In short, Cyclic Dependency is detected using a
Depth-First Search algorithm that visits all the nodes in the dependency graph
while checking which were already visited. Unstable Dependency is detected us-
ing Martin’s Instability metric [Martin et al., 2018]: if the majority of a package’s
dependencies are less stable than itself, then it is marked as an unstable depen-
dency smell. Hublike Dependency is detected by simply looking at the number of
incoming and outgoing dependencies a certain artefact has: if the sum of these de-
pendencies surpasses a certain system-based threshold, then the artefact is marked
as a hub. Finally, God Component is detected using an automatically-calculated
variable threshold [Arcelli Fontana et al., 2015b] using the distribution of the total
amount of lines of code of the packages in a benchmark of over 100 systems; the
packages in the analysed system are then compared with this threshold and the
artefacts surpassing it are marked as God Components4.

Arcan’s results were validated in different studies. A first validation of the
results of Arcan was performed on two open-source projects with a precision of

4See https://fse.studenttheses.ub.rug.nl/19603/ for more details.

https://fse.studenttheses.ub.rug.nl/19603/
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100% [Arcelli Fontana et al., 2016]. Next, the results of Arcan were also validated
in an industrial setting by two different studies: first on industrial C/C++ projects
obtaining 50% precision [Martini et al., 2018a] and then on industrial Java projects
obtaining 70% precision [Arcelli Fontana et al., 2020]. The precision metric was
chosen as the main indicator of Arcan’s performance because the true positive rate
was found to be the main concern for developers during the mentioned studies.

The second tool we used, ASTracker, computed the above-mentioned change
metrics and identified the elements affected by each smell. ASTracker’s main
feature is to track architectural smells from one version to the next (i.e. link the
same instances detected in two adjacent versions), but for this study it was only
used to calculate the change metrics as stated above. To guarantee the correctness
of the implementation of the change metrics, we used thorough unit testing.

At last, the Peregrine high performance computing cluster, offered by the Uni-
versity of Groningen, provided the computational power necessary to carry out
the whole data collection process.

5.5 Data analysis

5.5.1 Controlling for size

Changes to source code files are intuitively more frequent in files of greater size (i.e.
more lines of code). In fact, source code size has been empirically found to interfere
with the actual findings in several cases [El Emam et al., 2001, Zhou et al., 2009].
Thus, source code size is a confounding factor in our analysis that could skew the
results unpredictably and obfuscate the impact of smells on change frequency and
size. To mitigate this threat, as already mentioned in the Introduction and Related
Work sections (Sections 5.1 and 5.2), the data analysis will include controlling for
size. Specifically, we will analyse the data both by considering all artefacts (without
controlling for source code size) and by grouping the artefacts (either classes or
packages) into four size groups, based on their effective lines of code (LOC). This
way we can compare how smells impact files of similar size. The groups are
defined as follows: Small = [1,Q1), Medium-Small (M-Small) = [Q1,Q2), Medium-
Large (M-Large) = [Q2,Q3), and Large = [Q3,Q4], where Q1, Q2, Q3, Q4 are the
first, second, third, and fourth quartiles respectively of the distribution of the LOC
of classes (or packages, when working with smells affecting packages) in a given
project. This means that these values differ for each project. Table 5.2 shows the
quartiles of the LOC distribution in the whole data set.

This approach was proposed by Aniche et al. in a previous study
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Table 5.2: Distribution of the Lines Of Code metric in classes and packages in the
whole data set.

0% 25% (Q1) 50% (Q2) 75% (Q3) 100% (Q4)

Classes 1 10 27 77 14,990
Packages 1 549 1,340 2,976 59,074

[Aniche et al., 2018]. We adopted it as it allows us to compare smelly and non-
smelly artefacts with comparable size. This method guarantees that all four groups
have the same number of files, which is an important prerequisite to ensure that
the results of the study are not skewed. Indeed, if we were to partition the files,
for example, with a range of 45 LOC per group, the resulting small group (0-45
LOC) would have 200K+ artefacts, whereas the others just a few thousands. This
imbalance would greatly affect the outcome.

5.5.2 RQ1 – Do classes and packages with smells change more
frequently than classes and packages without smells?

For this RQ we statistically analyse the significance of the association between
changes in affected and non-affected artefacts. The Fisher’s exact test of indepen-
dence [Sheskin, 2007] is performed on two categorical variables: in our case, these
variables are CHO and whether this artefact is affected by a smell. The input to
the test is a contingency table where all the possible values of the two (categor-
ical) variables are listed on the rows and columns of the table respectively. The
null and alternative hypotheses of the tests (one test for each 4-month-long period
considered) are:

• Null hypothesis HRQ1
0 : artefacts affected by smells are equally likely to be

subject to changes than artefacts not affected by smells (π1 = π2)

• Alt. hypothesis HRQ1
1 : artefacts affected by smells are more likely to be subject

to changes than artefacts not affected by smells (π1 > π2)

where π1 and π2 represent the proportions of the two categories with respect to the
overall population.

To ensure the test is supported, we need to make sure that the proportions in the
contingency tables used to run the tests are not excessively unbalanced towards
one category. Contingency tables are likely to be unbalanced if the time period is
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too small because only limited changes can happen in a certain amount of time
and that time can not be enough to determine whether the correlation is present or
not. In other words, given that there are more non-changing files than changing
files, a period of 1 month is likely to be insufficient for enough files to change.
Thus we aggregated our data to a 4-month granularity (rather than 1-month);
this is approximately the average release rate we mined from the Git tags of our
projects. We call these “versions” pseudo-releases. Thus, for each pseudo-release v,
we test for the null-hypothesis, namely, whether there is no statistical difference in
the proportions of changes for artefacts affected and not affected by architectural
smells. This analysis will include all types of smells, both at class and package
level, detected by Arcan.

The next step is to compare the percentages of pseudo-releases that do show a
significant difference (accepting HRQ1

1 ) and the pseudo-releases that do not show
any significant difference (accepting HRQ1

0 ), which will allow us to answer RQ1.
Note that we opted to perform one test per commit per project, rather than one
test per project, to ensure that the imbalance in changes detected is not the result
of a few change hotspots throughout the history of the system, but rather a more
constant phenomenon. The confidence level used for this test and all the following
tests is equal to α = .05.

RQ1a – Do different smell types have a different impact on frequency of change?

In order to answer RQ1a, we used a logistic regression model [Sheskin, 2007]. This
kind of model allows to predict the value of a binary dependant variable given a
set of multiple independent variables. Moreover, it can be exploited to compute
the effect size between the dependant variable and each independent variable, to
identify which variable influences the outcome. In this case, we chose the CHO
metric (see Section 5.4) as dependant variable and the number of smell instances
of each smell type t as independent variables.

The hypotheses of this analysis are:

• Null hypothesis HRQ1a
0 : the type of smells does not have an impact on the

occurrence of changes of artefacts

• Alt. hypothesis HRQ1a
1 : the type of smells does have an impact on the occur-

rence of changes of artefacts.

The analysis was performed individually for each 4-month commit period, for all
projects. Then, for each type of smell we counted the number of times that the
p-values obtained by the logistic regression were significant.
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RQ1b – Does the number of smells have a different impact on frequency of
change?

For RQ1b we used the non-parametric Mann-Whitney statistical test to check
whether the average number of smells per commit in artefacts that do not change
and in artefacts that do change is statistically similar. Formally, we calculate

changed(v) =

Cv∑
x

nv(x)
|Cv|

unchanged(v) =

Uv∑
x

nv(x)
|Uv|

where Cv is the set of artefacts x that changed in commit v, Uv is the set of
unchanged artefacts, and nv(x) counts the number of smells x has in v.

The hypotheses for this analysis are:

• Null hypothesis HRQ1b
0 : the number of smells in artefacts that do not change is

equal to the number of smells in artefacts that do change (µunchanged = µchanged)

• Alt. hypothesis HRQ1b
1 : the number of smells in artefacts that do not change is

less than the number of smells in artefacts that do change (µunchanged < µchanged).

with µ representing the mean of the populations (changed and unchanged). Ad-
ditionally, to further reinforce the findings we also check whether there is any
correlation (using Spearman’s ρ) between the number of smells an artefact is af-
fected by and the number of changes or their size.

5.5.3 RQ2 – What is the difference in the change frequency of an
artefact before and after a smell is introduced?

The analysis for this research question will look at the PCCC metric of a certain
artefact before and after a smell is introduced in that element. We then aggregate
the data per project and perform a Wilcoxon Signed-Ranks test [Sheskin, 2007] for
each project.

Formally, for every artefact x affected by a smell in the lifetime of a system S we
compute

dS(x) = PCCCa f ter(x) − PCCCbe f ore(x)

where PCCCbe f ore(x) = PCCCi
k(x) and PCCCa f ter(x) = PCCCk

j(x) with i being the
commit index where x first appeared, k where it was first affected by a smell, and
j when it was last affected by a smell, or the final commit. Artefacts with either a
window before or after that is smaller than 5 commits were filtered out to avoid
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skewed data. The values assumed by dS for the selected artefacts from S are used
as input for the test.

The hypotheses for this test are:

• Null hypothesis HRQ2
0 : the change frequency of artefacts before and after a

smell is introduced is the same (θdS = 0)

• Alt. hypothesis HRQ2
1 : the change frequency of artefacts after a smell is

introduced is greater than before (θdS > 0).

where θ represents the true median of the underlying population. Additionally,
using the ShapiroWilk test, we also test for the normality of dS to ensure we chose
the appropriate statistical test.

5.5.4 RQ3 – Is the size of the changes in source code artefacts
affected by smells, larger than in non-affected artefacts?

For this RQ we want to investigate if there is a significant difference in the variance
of the size of the changes in affected versus non-affected artefacts in each commit
analysed. We look at the variance because the majority of commits have a relatively
small change size, whereas few commits (e.g. the pull requests) have a very large
change size.

To determine whether there is a significant difference in these two groups
(smelly vs non-smelly), we perform a Brown-Forsythe test for the homogeneity
of variance [Sheskin, 2007].

For each commit v we compute the aggregate change size (TACH metric) of
changing artefacts by averaging all the change sizes for that commit. Formally:

smelly(v) =

Av∑
x

TACH(x)
|Av|

clean(v) =

Nv∑
x

TACH(x)
|Nv|

where Av is the set of affected artefacts in a commit v, and Nv the non-smelly
artefacts. Note that we use the term “clean” to indicate non-smelly artefacts for
conciseness.

Next, we test the following hypotheses on those two variables for each project:

• Null hypothesis HRQ3
0 : the variance in change size is equal in affected and

clean artefacts by smells (σ2
smelly = σ2

clean)

• Alt. hypothesis HRQ3
1 : the variance in change size is not equal in affected and

clean artefacts (σ2
smelly , σ

2
clean)
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where σ2
smelly and σ2

clean represent the true variance in the underlying populations.

5.6 Results

5.6.1 Relation between change frequency and smelly artefacts
(RQ1)

The results of the Fisher’s tests (main question of RQ1) performed on each 4-
month period of the thirty-one systems analysed are straightforward when not
controlling for size. Figure 5.3 reports in detail the number of 4-month periods
(or pseudo-releases) where the null hypothesis was accepted, rejected, or the test
was unsupported by the data. The proportion of smelly artefacts that change is
consistently higher than non-smelly artefacts that change in 82% of the total 4-
month periods analysed in most of the projects (rejecting HRQ1

0 ). In other words,
artefacts with smells do change more frequently. For the remaining 18%, if we
remain conservative and assume that 11.5% of the unsupported tests are accepted,
the smelly and non-smelly artefacts are equally likely to change (accepting HRQ1

0 ).
Note that the unsupported tests are usually the ones corresponding to the pseudo-
releases in the early phases of the project with a relatively little number of smells
and/or changes. We also note that these percentages hold for the majority of
the projects, with six exceptions: Elasticsearch, Jena, HTTP-components, Guava,
Retrofit, and Spring-boot. These projects exhibit the opposite scenario, with more
than 50% of the pseudo-releases featuring changes in non-smelly artefacts (neither
accepting nor rejecting HRQ1

0 ). This can be at least partially explained in all six cases:
they either have a very low density of smells (HTTP-components and Retrofit) or
the actual proportion of smelly components that change is lower (up to 10 times)
than non-smelly components that change (Elasticsearch, Guava and Jena).

When adjusted for size (using the lines of code - see Section 5.5.1), the results
depicted in Table 5.3 show that for Medium-Large and Large artefacts the null hypoth-
esis HRQ1

0 was rejected 66.1% and 78.9% of the times on average across all projects,
respectively. For Small and Medium-Small artefacts, percentages drop to 30.2% and
45.4%, respectively. In total, HRQ1

0 was rejected 55.7% of the times and accepted
30.2%, while in the remaining 14.1% of times, the analysis was unsupported.

Ultimately, the results controlled for size do not deviate too much from the
uncontrolled ones, but allow us to discern that the larger the file, the more an
artefact is likely to change if affected by a smell.
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Table 5.3: Percentages of rejected HRQ1
0 per project by size group. (Averages:

Accepted: 33.6%; Rejected 59.1%; Unsupported: 7.3%)

Project
% P-value < .05

Small Med.-Small Med.-Large Large

accumulo 38.5 65.4 96.2 100.0
activemq 78.0 65.9 100.0 100.0
ant-ivy 57.6 57.6 90.9 100.0
calcite 67.9 64.3 75.0 71.4
cassandra 74.3 94.3 100.0 100.0
chukwa 0.0 31.6 42.1 63.2
druid 40.0 84.0 96.0 100.0
elasticsearch 30.0 43.3 43.3 43.3
fastjson 7.4 33.3 85.2 88.9
gson 3.8 0.0 30.8 69.2
guava 37.0 0.0 25.9 29.6
httpcomp. 2.6 13.2 36.8 39.5
jackrabbit 15.2 69.6 84.8 84.8
jackson 33.3 95.8 100.0 100.0
jena 9.3 29.6 38.9 44.4
jenkins 44.7 72.3 95.7 100.0

Project
% P-value < .05

Small Med.-Small Med.-Large Large

jgit 48.4 77.4 96.8 96.8
jspwiki 31.9 70.2 68.1 89.4
libgdx 8.6 28.6 78.3 100.0
lucene 38.6 47.7 56.8 75.0
mina 25.8 12.9 38.7 67.7
pdfbox 54.3 77.1 94.3 100.0
pgjdbc 24.5 35.8 64.2 79.2
poi 36.5 55.8 92.3 100.0
retrofit 0.0 0.0 3.7 11.1
selenium 18.0 36.0 40.0 62.0
spring 14.8 3.7 25.9 44.4
struts 40.0 32.5 85.0 95.0
testng 5.4 5.4 37.8 100.0
tika 13.5 51.4 70.3 91.9
xerces2 35.4 52.1 56.2 97.9

Avrg. 30.2 45.4 66.1 78.9
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Figure 5.3: Results of the Fisher’s test for each project (Averages: Accepted: 6.5%;
Rejected: 82.1%; Unsupported: 11.4%).

RQ1a The aim of answering RQ1a was to understand if the specific type of the
smells affecting the artefacts has an impact on the occurrence of changes. Table 5.4
introduces the results of the multinomial logistic regression model. For each type
of smell, it shows the proportion of the 4-month-long periods where the null hy-
pothesis was rejected. A large number of rejected instances means that the given
type of smell has a significant effect on the dependant variable of the regression
model, that is the occurrence of changes. The table reports all the statistically signifi-
cant rates where a variable was considered relevant in the prediction of a change.
Each column is a different model calibrated for that size group (or using all files in
the case of ‘Uncontrolled’). We first notice that all the variables exhibit an increase
in significance as we look at size groups of larger files. There seems to be no par-
ticular smell type, perhaps only excluding Hublike Dependency, that provides a
clear contribution to the regression model over the other types.

The results imply that, in most cases, HL is the smell that contributes the most
to changes, however, there is no sufficient evidence to affirm that there is a clear
distinction between different types of smell. Thus, we conclude that we accept
HRQ1a

0 and affirm that there is no significant difference in the prediction power of
different smell types on source code changes.

RQ1b Furthermore, for RQ1b, we tested whether the number of smells (including
0) affecting an artefact is an important variable contributing to its change frequency.
The test results, depicted in Figure 5.4, show that in all projects, but two (Guava and
Pgjdbc), the average number of smells in changing artefacts is statistically higher
than in non-changing artefacts (rejecting HRQ1b

0 ) when not controlling for size. If
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Table 5.4: Results of the multinomial logistic regression in percentage of commits
a variable was statistically significant in predicting a change (Rejecting HRQ1a

0 ).

Variable
Commits % when variable is significant

Small Med.-Small Med.-Large Large Uncontrolled

Cyclic Dependency 12.2 14.1 20.2 29.1 39.7
Unstable Dependency 8.3 14.6 20.6 32.4 29.7
Hublike Dependency 22.1 22.3 26.7 44.6 51.9
God Component – – – 30.5 38.5

we consider the different size groups, the rejection rate is higher in the larger ones,
whereas in the Small group we reject HRQ1b

0 only twice. Additionally, larger size
groups also have a larger Cliff’s Delta coefficient with 31 tests having δ > .5 in
the Large and M-Large groups against the 3 in the M-Small and Small groups,
highlighting the difference in magnitude between the values of the two variables
tested.

To better grasp the contrast in smell density between changing and non-
changing artefacts in different size groups, Figure 5.5 plots the density (i.e. #
commits) of the (average) number of smells of these two categories. In the figure,
one can see how the average number of smells in changing and non-changing
artefacts varies in the commits in our data set. When no smells affect an artefact
(leftmost side of the plot), in several commits, only the smaller files change. But
looking at the Medium-Large and Large files, we observe both curves shifting in
shape and moving towards the right of the plot, with the changing artefacts curve
growing larger and distantiating itself from the non-changing artefacts curve. This
means that for artefacts with more smells, the larger they are, the more likely
they are to change.

Figure 5.6 shows how the change frequency varies by the number of smells
affecting an artefact, with different colours representing different projects. As it
can be noted, there is a steep increase in the number of changes as the number of
smells increases from 0 to 15, before stabilizing and slightly growing towards the
end of the plot5. The Spearman statistical correlation tests show that: 8 projects
show a strong (ρ ≥ .7) positive correlation; 7 show a moderate (.5 ≤ ρ < .7) positive
correlation; 5 projects have a weak (.3 ≤ ρ < .5) correlation; for 2 projects there is
little-to-no correlation (ρ < .3); and for the remaining 9 projects p > .05.

In summary, the more smells affecting an artefact, the higher the change

5For reference, the right-most project in yellow-ish/ocra is Cassandra. Per-project plots are available
in the replication package.
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Figure 5.4: Mann-Whitney tests testing HRQ1b
0 by size groups.

frequency for that artefact.

5.6.2 Impact on change frequency after the introduction of a smell
(RQ2)

Whereas the results of RQ1 hint that changes are more likely, and more frequent, in
smelly artefacts, they do not tell us anything about the effects of the introduction
of a smell on the change frequency of a particular artefact throughout its lifetime.
This particular aspect is considered and tested by RQ2 through a series of Wilcoxon
Signed-Ranks tests; this was confirmed to be suitable in this case because most of the
projects have their dS (as defined in Section 5.5.3) function not normally distributed.
Note that we do not control for size for this RQ because this is a temporal analysis,
thus there is no way to establish exactly which size category one artefact belongs
to, as the LOC fluctuate over time. The results, presented in Table 5.5, indicate that
for 16 projects (57.1%) there is an increase in the frequency of changes (in the PCCC
metric, to be precise) after a smell is introduced. For 12 projects (42.9%) instead,
the opposite holds and more changes happen before the introduction of the smell.
Finally, 3 projects did not contained enough samples and were ignored.

We can further inspect the distribution of dS in Figure 5.7, where we can see how
the distribution of changes to the artefacts are skewed either towards the “before”
or “after” the introduction of a smell side, depending on the project. Therefore,
we can conclude that, in some cases, the introduction of an architectural smell
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Figure 5.5: Average number of smells in changing/not-changing artefacts in all the
analysed commits by size groups.

has increased the frequency of changes in the affected component. We offer a
potential explanation for the 12 projects (skewed towards the “before” part) that do
not conform to this trend in the Discussion section, but we would like to note that 9
of the 16 projects for which we rejected the null hypothesis had n ≤ 30, whereas the
accepted ones only had 6. This means that the tests were likely accepted because
of an insufficient number of samples.

5.6.3 Comparison of magnitude of changes in smelly and non-
smelly artefacts (RQ3)

For this last question, when testing the null hypothesis HRQ3
0 on all projects, without

adjusting for the size of the artefacts, we reject it for all of them – meaning that
change size (TACH metric) in artefacts affected by smells has a consistently higher
variance than the non-smelly ones. However, when controlling for the size of the
affected artefacts, a different picture emerges. The results are presented in Figure
5.8. Smaller classes and packages do not exhibit this pattern as consistently as the
larger ones do; in fact, in Small artefacts we note the opposite in the majority of
the projects. For Large, M-Large, and M-Small artefacts the results are consistent
in rejecting the null hypothesis HRQ3

0 . This can be further visualised in Figure 5.9,
where the violin plots of the average change size of smelly and non-smelly artefacts
in the analysed commits can be visually compared for each size group. The more
elongated the shape of the violin, the larger the variance in the corresponding
group. By observing this figure, we note that the change size in smelly artefacts
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Figure 5.6: Average change frequency by number of smells per project (colour-
coded). LOESS regression curve shows the trend.

Acc.

Rej.

Rej.

Rej.

Acc.

Rej.

Acc.

Rej.

Acc.

Rej.

Rej.

Acc.

Acc.

Before After

jen
ajac

ks
onjac

kr
ab

bit
gu

av
afas

tjs
on

ela
sti

cs
ea

rc
h

dr
uid

ch
uk

waca
ss

an
dr

a
ca

lci
te

an
t−

ivyac
tiv

em
qac

cu
m

ulo

−1.0 −0.5 0.0 0.5 1.0
Frequency of changes (dS)

Rej.

Rej.

Rej.

Acc.

Rej.

Rej.

Rej.

Acc.

Acc.

Rej.

Rej.

Acc.

Acc.

Acc.

Rej.

Before After

xe
rc

es
tik

ate
stn

g
str

ut
s

sp
rin

g−
bo

otse
len

ium

po
ipg

jdb
cpd

fb
ox

m
ina

luc
en

e
lib

gd
xjsp

wiki
jgi

tjen
kin

s

−1.0 −0.5 0.0 0.5 1.0
Frequency of changes (dS)

Figure 5.7: Density of PCCC before and after the introduction of a smell (dS func-
tion).
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Table 5.5: Wilcoxon Signed-Ranks results and the sample size (# of artefacts) for
the test (HRQ2

0 rejected in bold). (Total: Accepted: 42.9%; Rejected: 57.1%).

Project P-value Null Hyp. Obs.

accumulo 0.50 Accepted 11
activemq < .01 Rejected 120
ant-ivy < .01 Rejected 64
calcite < .01 Rejected 75
cassandra 0.30 Accepted 178
chukwa < .01 Rejected 17
druid 0.61 Accepted 47
elasticsearch 0.04 Rejected 28
fastjson 0.83 Accepted 31
gson 0.50 Less than 10 obs. 5
guava < .01 Rejected 34
httpcomp. < .01 Less than 10 obs. 9
jackrabbit < .01 Rejected 82
jackson 0.28 Accepted 12
jena 0.86 Accepted 11
jenkins < .01 Rejected 178

Project P-value Null Hyp. Obs.

jgit < .01 Rejected 42
jspwiki < .01 Rejected 59
libgdx 0.30 Accepted 98
lucene < .01 Rejected 220
mina < .01 Rejected 22
pdfbox < .01 Rejected 103
pgjdbc 0.07 Accepted 23
poi 0.25 Accepted 36
retrofit 0.04 Less than 10 obs. 4
selenium 0.03 Rejected 16
spring-boot 0.02 Rejected 25
struts 0.05 Accepted 13
testng 0.97 Accepted 15
tika 0.17 Accepted 33
xerces2 < .01 Rejected 86
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Figure 5.8: Brown-Forsythe tests results by size groups for H3
0.
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Figure 5.9: Violin plots of the distribution of the average change size (TACH metric)
in the analysed commits grouped by smelly and non-smelly artefacts (log scale).

tends to increase (the violin shifts upwards) as the size of the artefacts increases. In
stark contrast, the violin shapes of the non-smelly group are surprisingly similar
across the four different groups; this contrast highlights the impact of smells on
affected artefacts w.r.t. change size.

Hence, both visual analysis and statistical tests converge to the same conclusion
that smelly artefacts undergo changes of higher magnitude than non-smelly
artefacts, especially in larger artefacts. More precisely, smelly artefacts have an
average change size (TACH) across all the projects of 1, 608, whereas non-smelly
artefacts settle at 109. The difference is one order of magnitude higher in smelly
artefacts; we note that the smelly artefacts also have a higher variance.
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5.7 Discussion

In the following section we discuss and elaborate on the results presented above.
From the obtained results, we have empirically confirmed that architectural

smells (at least the ones considered for this study), exhibit a correlation with the
change frequency and change size of the artefacts they affect, and especially the larger
artefacts. As stated previously, our goal was to seek and establish correlation, rather
than causality.

The results from RQ1 show that artefacts affected by at least one smell exhibit
more changes than artefacts without smells. We also saw that as the number of
smells increases, so does the likelihood of the affected artefact to change. Inter-
estingly, we found evidence suggesting that the four different types of smells that
we studied affect change frequency in a similar way. Theoretically speaking, the
main drawback associated with the UD smell type [Arcelli Fontana et al., 2016]
is an increased likelihood to change caused by a low stability of the artefacts it
depends upon [Martin et al., 2018]. Indeed, while we observed that UD-affected
artefacts have an increased change frequency, we also expected them to have a
higher change frequency than artefacts affected by the other smell types. However,
this is not what we observed, as all four smell types seem to have a similar effect
on change, with HL surpassing UD in fact. The HL smell was hypothesised to
be prone to propagate changes due to its numerous dependencies which increase
the likelihood that a change propagates to the central component before rippling
to the components depending on it (see Chapter 2 for further information). Given
this theoretical description, we would predict that changes may propagate within
the structure of HL smells, but we did not expect it to deviate from the other smell
types and surpass UD.

The results of RQ2 show an increase in change frequency after the introduction
of a smell. This finding implies that the introduction of a smell leads to an increase
in the effort developers spend on the particular artefact(s) affected by that smell
compared to the period of time that artefact was not affected by any smell. Note that
change frequency and size were used to estimate the effort spent by a developer in
previous studies too [Sjoberg et al., 2013, Olbrich et al., 2009, Nugroho et al., 2011].
Nonetheless, it is interesting to note that this result is not valid for all of the projects
considered, and in some cases the opposite situation occurs. We conjecture that
this result is highly dependant on how development teams decide to implement
new functionality in the system. If developers reuse existing classes, than these
classes are likely to require changes for a longer period of time, and especially after
a smell affects them (as seen from our results). If developers do not reuse existing
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classes and implement a new functionality in new classes and packages, then old
and smelly classes are less likely to be changed, because they serve their purpose as
they are without requiring further changes. More generally, in the “old” features
of a system, very little maintenance effort is spent on good design and architecture,
e.g. by refactoring smells; this means that components affected by smells rarely get
changed.

A perfect example of this is provided by the project PgJDBC. PgJDBC, among
other projects, has a package named “v2”, suggesting that functionality for the pre-
vious release (“v1”) is implemented separately in a different package. The classes
implementing the functionality for the previous release are thus no longer extended
and therefore they no longer change, but they are still kept in the repository in or-
der to support legacy functionality. Assuming that at least some of these classes
were affected by smell, the resulting effect is that their change frequency after the
smell was introduced is close to zero. Moreover, given that these are open-source
projects, we cannot assume that they undergo constant development, and changes
in the popularity of a project may influence how many pull requests, commits,
and changes are performed. Ultimately, these two factors greatly influence the
variability in the results obtained from RQ2.

With the obtained results from RQ3 there is additional evidence to support that
developers spend more time on smelly artefacts, where we noticed a consistently
larger change size – again, especially in the larger files. This is especially true in
pull requests commits, the type of commits where usually new functionality, or
big bug fixes, are introduced. This result becomes even clearer when observing
Figure 5.9: there is a strong contrast between the constant change size in non-
smelly artefacts across the four different size groups, vs. the increasing change
size in smelly artefacts. This clearly shows the spending of extra effort to perform
changes in smelly artefacts.

Putting together the results of all the three research questions, we conclude
that developers are not only compelled to make more frequent changes to smelly
artefacts, but also to make larger changes. Ultimately, if we assume that change
is a proxy of the effort spent maintaining the components affected by smells
[Sjoberg et al., 2013, Olbrich et al., 2009], the technical debt interest of those compo-
nents is increased by two factors: change frequency and change size. An important
caveat is that these findings do not include any input from the actual developers,
therefore, further research is required in order to understand the full extent to
which architectural smells perturb development activities from the perspective of
software practitioners themselves. For the time being, we can conclude that archi-
tectural smells constitute a high risk, as their accumulation can increase technical
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debt interest to un-sustainable levels.
A common trend in our results is that smelly Large and Medium-Large smelly

files exhibit statistically different patterns in change frequency and size in contrast
to the Small and Medium-Small groups. It is interesting to explore why this happens
mostly in these size groups. The main reason is that GC and HL are defined based on
the number of lines of code or incoming and outgoing dependencies of the affected
artefact. Namely, they cannot affect small artefacts by definitions. Smaller artefacts
can however still be impacted by a HL smell if they depend on the hub (central
artefact), because change may propagate to them from the hub. This difference
between smaller and larger files has a clear implication for researchers: we advise
the development of better prioritisation methods for refactoring architectural smells
by prioritising smells affecting larger artefacts; these are the ones where developers
pay the most technical debt interest.

Finally, some of the findings that emerged from this study match what Oyetoyan
et al. [Oyetoyan et al., 2015] and Le et al. [Le et al., 2018] have found in their own
works. Specifically, our results from RQ1 match what Le et al. [Le et al., 2018]
found, namely the average number of changes in smelly files is higher than in non-
smelly files (see Figure 5.6). On top of that, we have also shown how the number of
changes positively correlates with the number of smells (RQ1b). Answering RQ1a
instead, we have noted among others, that potentially not all types of cycles are im-
pactful on changes. This corroborates what Oyetoyan et al. [Oyetoyan et al., 2015]
found about Cyclic Dependencies, i.e. certain types of cycles do not have an impact
on changes. However, we did not investigate precisely which category of cycles
does so and neither if they affect neighbour artefacts.

5.8 Study Limitations

The identified limitations of this study are described in terms of reliability, external
validity and construct validity as described by Runeson et al. [Runeson et al., 2012].
Internal validity was not considered as we did not examine causal relations
[Runeson et al., 2012].

5.8.1 Construct validity

Construct validity concerns to what extent this study is measuring what it is
claiming to be measuring [Runeson et al., 2012]. To ensure construct validity, we
adopted the well-known case study design guidelines provided by Runeson et
al. [Runeson et al., 2012] and iteratively revised the protocol during the duration
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of the study. Thus, the data collection and analysis processes were meticulously
planned and implemented to ensure that the final results would answer precisely
the three main research questions of interest of this study.

One concrete threat to construct validity is the arbitrary selection of the 4-
week interval between the analysed commits. While the selection of this particular
interval was computationally convenient (i.e. more commits would pose higher re-
quirements for processing time), in the more active projects this time interval might
have caused the loss of information for frequency-related metrics. For instance, a
class might have changed several times during the course of 4 weeks, but we only
count it is as one big change. As a result, the coarse-grained frequency data may
have impacted the analysis, and thus the results, of RQ2. Additionally, this interval
might clash with the culture of each development team in pushing changes to the
central repository and the size of those changes. However, the very selection of this
particular interval also partially mitigated this risk, if we compare our study with
related work, where most studies [Le et al., 2015, Le et al., 2018, Khomh et al., 2012]
use time in-between releases, which is usually longer and more susceptible to the
risks mentioned above.

Similarly, the pseudo-release data aggregation we performed for RQ1 might be
incorrect even though it is based on empirical evidence. The problem is that we
used the date the Git tag was added, which might not match the official release
date of that release. To mitigate this risk we manually inspected all the dates and
ensured they were reasonable and matched the versions’ numbering order (e.g.
v1.1 comes before v1.2 and their dates match such order). Tags with different
release numbers but with the same date were removed.

Another threat to construct validity is related to our use of change frequency
and size as indicators of technical debt interest. The same indicators have been used
in previous studies [Ampatzoglou et al., 2018, Nugroho et al., 2011], as there is no
way to directly measure technical debt interest. However, it is important to keep
in mind that they are only proxies and the actual interest paid by developers might
vary significantly. Thus, assuming that an increase in change frequency and size
corresponds to a direct increase in technical debt interest paid by the development
team while implementing new features, or making changes to the code base, is
not always correct. The more frequent and bigger changes required to implement
those features may be a result of the inherent difficulty of implementing the features
themselves, or even other external factors. On the other hand, it is also unlikely that
all the new features and changes are characterised by inherently-difficult elements
to design and implement.
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5.8.2 External validity

This aspect of validity reflects to what extent the results of this study can be fitted
to the whole population of projects considered and relatable contexts.

Two threats have been identified in this case. The first one involves the types
of projects we selected for our study. While all of them are open-source projects,
eighteen of them are projects from the Apache Foundation and only thirteen are
non-Apache projects. The imbalance is caused by the fact that most Apache projects
have a very long and consistent history, which made them more likely to be adopted
for our analysis. We decided to mitigate this aspect by diversifying as much as
possible the application domains of the selected projects. Moreover, we collected
our data from thirty-one projects, considerably more than what had been done
by previous, similar studies (i.e. [Le et al., 2015] used 14 projects; [Le et al., 2018]
used 8 projects, and [Oyetoyan et al., 2015] used 12 projects), thus strengthening
external validity.

The other threat to external validity concerns the architectural smells we used
for our analysis. It is very hard to generalise the results to other architectural smells
and it is probably not possible to do so with enough confidence for every type of
smell. This very much depends on the type of smell and the detection strategy for
that smell. Therefore we cannot claim any generalisation of our results to other
architectural smells.

5.8.3 Reliability

Reliability is the aspect of validity focusing on the degree to which the data and
the analysis depend on the researchers performing them.

All the tools and the data used in this study are freely available online (see
related studies and Footnote 2) to allow researchers to study or replicate our results
using the same data or even a different set of projects.

The intermediary findings and data analysis steps were all inspected and dis-
cussed by all the authors of the chapter this chapter is based on to ensure their
reliability. Moreover, similar data collection and analysis techniques have been
also used in previous studies on code smells (e.g. [Khomh et al., 2009]) and archi-
tectural smells (e.g. [Le et al., 2018]), assuring that it is indeed possible to do this
type of analysis for these types of artefacts.
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5.9 Conclusions

The present study has thoroughly investigated the relationship between a set of
four architectural smells and the changes in the affected components. In total,
thirty-one projects, adding up to a total of 360 years of development and over 305
million lines of code, were statically analysed and then statistically tested against
our hypotheses.

The main findings of this case study show that: (1) artefacts affected by architec-
tural smells change more frequently than non-smelly artefacts; (2) the type of the
smell does not have a significant correlation with changes; (3) the more smells affect
an artefact the more likely it is to change; (4) the change frequency of an artefact
increases after the introduction of a smell in the majority of the systems; and (5) the
size of changes is significantly higher in smelly artefacts than in non-smelly ones.
These findings are especially valid for artefacts belonging to the Medium-Large and
Large size groups. We thus concluded that architectural smells are very likely to be
associated with an increase in the technical debt interest developers pay each time
they work on artefacts affected by smells.

The investigations presented in the previous four chapters provided several
paramount insights on how architectural smells, how they are introduced and
evolve, how they are perceived by practitioners, and how they relate to source
code changes. In the next chapter, we present an approach to quantify the technical
debt generated by architectural smells using all the knowledge collected in the
previous chapters.
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Chapter 6

An architectural technical debt index based
on machine learning and architectural smells

Simplicity is a great virtue but it requires hard work to achieve it and
education to appreciate it. And to make matters worse: complexity
sells better.

— Edsger Wybe Dijkstra

Abstract

A key aspect of technical debt (TD) management is the ability to measure the
amount of principal accumulated in a system. The current literature contains
an array of approaches to estimate TD principal, however, only a few of them
focus specifically on architectural TD, and none of these are fully automated,
freely available, and thoroughly validated. Moreover, a recent study has shown
that many of the current approaches suffer from certain shortcomings, such as
relying on hand-picked thresholds.

In this chapter, we propose a novel approach to estimate architectural technical
debt principal based on machine learning and architectural smells to address
such shortcomings. Our approach can estimate the amount of technical debt
principal generated by a single architectural smell instance. To do so, we
adopt novel techniques from Information Retrieval to train a learning-to-rank
machine learning model that estimates the severity of an architectural smell and
ensure the transparency of the predictions. Then, for each instance, we statically
analyse the source code to calculate the exact number of lines of code creating
the smell. Finally, we combine these two values to calculate the technical debt
principal.

To validate the approach, we conducted a case study and interviewed 16 prac-
titioners, from both open-source and industry, and asked them about their
opinions on the TD principal estimations for several smells detected in their
projects. The results show that for 71% of instances, practitioners agreed that
the estimations provided were representative of the effort necessary to refactor
the smell.
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6.1 Introduction

The technical debt (TD) metaphor borrows the concepts of principal and interest
from the financial domain and uses them to convey key software maintenance
concepts. In particular, debt principal indicates the effort required to fix a current,
non-optimal solution, whereas debt interest indicates the recurrent effort necessary
to keep maintaining it [Avgeriou et al., 2016]. As an example, consider a portfolio
management system that requires massive revisions in order to accommodate for
the changes required by the customer [Cunningham, 1992]. The interest represents
the recurrent costs of making the revisions, whereas the principal is the cost of
completely replacing the solution with a new one that would allow these changes
to be seamless.

The importance of managing TD is ever increasing, especially for architectural
TD (ATD), as architectural decisions were found to be the greatest source of TD
faced by practitioners [Ernst et al., 2015]. A key part of managing TD is to be able
to measure the amount of TD principal incurred by an application, but this has
not yet been effectively addressed in the state of the art. Theoretically, the prob-
lem of measuring the TD principal requires defining a function that transforms
maintenance-related data points (metrics, smells, violations of rules or principles,
etc.) into a single number representing the overall effort required to fix them. Over
the past years, several studies proposed approaches to estimate the amount of debt
principal accrued by an application [Khomyakov et al., 2020, Avgeriou et al., 2021],
both at the architectural level and at code or design levels; however, most of these
studies relied on techniques that have known shortcomings and resulted in esti-
mation functions that were not thoroughly validated [Khomyakov et al., 2020]. A
common weakness shared by many of these studies is the use of hand-picked
thresholds or relying on benchmarks that include arbitrary systems (of arbitrary
size, domain, etc.) to determine these thresholds (see Section 6.10 for more de-
tails). Moreover, while some of these approaches are fully automated, they are no
freely-available implementations that can be used by others to replicate the results
obtained.

In this chapter, we propose a novel approach to estimate ATD principal, called
ATDI, by adopting machine learning (ML) to overcome the aforementioned short-
comings of existing approaches. The main advantage of using ML over thresholds
or benchmarks is that ML does not require picking these manually; the model will
automatically deduce these from the data.

In our approach, we use architectural smells (AS) as the main proxy for
measuring ATD. AS represent decisions that violate design principles and
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result in undesired dependencies, overblown size, and excessive coupling
[Lippert and Roock, 2006, Garcia et al., 2009] among the classes and packages of
a system. The main advantage of using AS as a proxy for ATD is that we can esti-
mate the amount of principal each AS contributes to the system. This provides a
benefit over simply using metrics as proxies for ATD because using AS is: a) action-
able as practitioners can make prioritisation decisions using AS; and b) targeted as
practitioners know exactly what the problem is, where it is, and how it should be
addressed. The main disadvantage of using AS is that they are but a part of all the
possible forms that ATD can assume, therefore it is not guaranteed that all of the
ATD principal is represented. Nevertheless, AS are the most common form of ATD
studied in the literature [Verdecchia et al., 2018], they have been recognised as par-
ticularly problematic in industry [Arcelli Fontana et al., 2020, Sas et al., 2021], and
they have been used by other approaches in the literature as proxies for estimating
the whole ATD principal [Xiao et al., 2016, Roveda et al., 2018]. Further details on
the choice of AS as a threat to validity are discussed in Section 6.9.

Our approach, uses ML to calculate the severity of each AS instance (i.e. how
harmful it is to Maintainability) and then combines it with a precise static analysis
of the source code to determine the lines of code responsible for the smell (which
we use to gauge the size of the smell within the system); this combination is used
to calculate the ATD principal as an index. To train the machine learning model,
we create a data set using techniques from Information Retrieval to compare AS
and rank them by their severity. The results of the training show that the ML
model can successfully rank AS by their severity with a high degree of accuracy
by achieving a .97 of NDCG, the de facto standard metric used to evaluate the type
of ML model we used in our approach (see Section 6.4.3 for details). Moreover, to
ensure the predicted severity is justified (e.g. not biased by a variable irrelevant
to a specific smell) and transparent, we employ a state-of-the-art technique, called
SHAP [Štrumbelj and Kononenko, 2014], to visually analyse a small sample of pre-
dictions. The results show how exactly the considered variables contribute to the
predictions.

After ensuring the ML model is predicting severity correctly, we validate the
output of the whole approach. We inspect whether the estimations provided by
our approach are actually relevant to developers by checking whether they are
representative of the repayment effort perceived and meaningful with respect to each
other (e.g. this smell requires twice the effort to refactor than this other smell, and
has a double ATDI value). To this end, we interview 16 practitioners from both
the open-source and industrial world. Each interviewee is shown a number of AS
instances in their own systems, as well as the respective ATD principal estimation



142
6. An architectural technical debt index based on machine learning and architectural

smells

provided by our approach. In 71% of the cases, interviewees totally agree with the
estimations provided by our approach and deem them representative of the effort
necessary to repay the debt.

This chapter’s structure is as follows: Section 6.2 summarises the theory of
architectural smells and the tool used to detect them; Section 6.3 introduces the ap-
proach we developed to estimate ATD principal as an index; Section 6.4 elaborates
on the case study design, including the data collection and analysis methodolo-
gies; Section 6.5 presents some descriptive statistics about ATDI; Sections 6.6 and
6.7 present the results of the two research questions; Section 6.8 discusses possible
implications of the results for researchers and practitioners; Section 6.9 describes
the threats to the validity of this study and how they were mitigated; Section 6.10
lists the related work and compares it with the results obtained by this study; and
finally, Section 6.11 concludes the chapter.

6.2 Architectural smells

The AS considered in this study are the following 4 types: Cyclic Dependency (CD),
Unstable Dependency (UD), Hublike Dependency (HD), and God Component
(GC). A complete description of architectural smells is available in Chapter 2.3.
The description of the tool used to detect them, Arcan, is available in Chapter
2.3.2.

6.2.1 Smell characteristics

An architectural smell characteristic is a property or attribute of an architectural
smell instance, see Chapter 2. An architectural smell instance is a concrete occur-
rence of a type of architectural smell. For each architectural smell type, one can
measure different characteristics. In this work, we are going to use architectural
smell characteristics as features (i.e. inputs) for a machine learning model (more
details in Section 6.3.3). The characteristics considered in this work are described
in Table 6.1.

6.3 The approach

This section describes the approach we designed to calculate an architectural tech-
nical debt index, or ATDI. As discussed in Section 6.1, our approach is based
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Table 6.1: Architectural smell characteristics relevant in this study.

Name Description

Size The number of artefacts affected by the smell.
Number of edges The number of dependency edges among the affected artefacts.
PageRank The importance of the artefacts affected by the smell within the depen-

dency network of the system [Roveda et al., 2018].
Affected Type The type of the affected artefact (i.e. either class or package)
PCT Depth* Depth refers to the number of packages that are an ancestor of the

affected element in the system’s package hierarchy (i.e. the PCT)
[Laval et al., 2012].

PCT Distance* The number of packages that need to be traversed in the PCT to reach
an affected element of the smell starting from another affected element
[Laval et al., 2012, Al-Mutawa et al., 2014].

Shape (for CD only) The shape of a cycle: tiny, circle, chain, star, clique (from
[Al-Mutawa et al., 2014]).

Instability gap (for UD only) Is the difference between the instability of the main com-
ponent and the average instability of the dependencies less stable than
the component itself [Arcelli Fontana et al., 2016].

*Since every smell affects multiple elements, and PCT metrics are calculated individually on the classes and packages
affected by the smell, we aggregate them as a mean and standard deviation.

exclusively on architectural smells (AS) and does not consider other types or forms
of technical debt.

6.3.1 Indexes and cost estimates

Theoretically, technical debt (TD) principal is defined as the cost necessary to de-
velop a better solution than the currently implemented one [Avgeriou et al., 2016],
easing future maintenance and evolution efforts. Similarly, architectural tech-
nical debt (ATD) principal refers to the same concept, but focuses on ar-
chitectural solutions only. Several tools, both commercial and open-source
[Avgeriou et al., 2021, Khomyakov et al., 2020], claim to estimate the cost to re-
pay the TD principal of a software system using just source code artefacts. In
practice, however, calculating the exact cost of remediation is a rather ambitious
task, as several factors – both internal and external to the codebase and the com-
pany – may influence it and vary depending on context, organisation and country
[Murillo et al., 2021, Rios et al., 2020, Rios et al., 2018]. If these are not taken into
account, the estimate could be imprecise and not reflect the actual cost. An index,
on the other hand, is not associated with an exact cost, but rather it correlates with
the effort necessary to remediate the technical debt incurred by the current solution.
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It also does not make any assumptions regarding the cost of development, thus
avoiding misleading engineers and misrepresenting the actual costs. Therefore,
we opted to treat the ATD principal calculated through our approach as an index,
rather than as an estimation of the cost.

The importance of choosing an index over a cost estimate emerged during the
design of our approach when we received feedback on the matter from two in-
dustrial experts. Both experts suggested to avoid a cost estimation as this would
spark unnecessary discussion and create controversy and confusion among the de-
velopers, architects, and managers who would have different opinions, ultimately
leading to distrust against the provided values. Note that this anecdotal evidence
is put to the test by the validation process described in the study design section
(Section 6.4).

To sum up, we do not aim at estimating the cost impact of technical debt
[Avgeriou et al., 2016], but only the effort required to fix the current solution
[Avgeriou et al., 2016] expressed as an index. Using an index over a monetary
estimation allows for a more concise and unbiased representation of the effort nec-
essary to remediate the incurred TD. Related work from Section 6.10.1 and Table
6.6 show that this is also a common choice in the literature when estimating ATD
principal.

6.3.2 Definition

The simplest and most intuitive way of estimating the ATD index based on AS is
by summing up the individual indexes of each smell [Ampatzoglou et al., 2018].
This is the solution adopted by previous studies as well [Letouzey and Coq, 2010,
Curtis et al., 2012, Marinescu, 2012, Roveda et al., 2018] and (1) allows users to
quickly understand the impact of one instance on the overall value of the index,
and (2) it resonates with the financial metaphor, where the total amount of debt is
the sum of all the debts.

Formally, we define the ATD principal index as

ATDI(P) =

SP∑
i

ATDI(xi) (6.1)

where xi are the architectural smells SP detected in the project P. This value can
be normalised by the size of the project P in lines of code to obtain the density of
ATDI per 1,000 lines of code, to allow us to compare values obtained from different
projects

ATDIdensity(P) =
ATDI(P)
LOC(P)

· 1, 000 (6.2)
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The index of a single smell is calculated as the product of:

ATDI(xi) = s(xi) ·m(xi) (6.3)

a) Severity, calculated by the function s : SP → [1, 10]. Severity was used
consistently in previous studies to estimate TD principal [Roveda et al., 2018,
Marinescu, 2012, Curtis et al., 2012]. In our case, we adopted Marinescu’s
[Marinescu, 2012] approach to define severity in the range [1, 10] with higher
values representing more severe smells1;

b) Extent, calculated by the function m : SP → N≥1 and defined as the number
of the lines of code that contribute to the creation of the smell, giving an es-
timation of its size within the system. The extent, or number of lines of code,
was used for estimating the amount of effort in previous studies on techni-
cal debt [Chatzigeorgiou et al., 2015, Kamei et al., 2016, Nugroho et al., 2011]
and non-technical debt related work as well as a proxy of complexity
[Morasca and Russo, 2001, Kitchenham and Mendes, 2004].

The definition from Equation 6.3 allows us to model the intuition that more severe
smells are more detrimental to maintainability [Roveda et al., 2018] and more extended
smells require more effort to be removed [Nugroho et al., 2011].

More details on the information used by previous approaches and existing tools
to calculate their indexes are summarised by Avgeriou et al. and Khomyakov et al.
[Avgeriou et al., 2021, Khomyakov et al., 2020]. In the following two sub-sections
we elaborate on the definition of the two concepts, i.e. severity and extent.

Defining severity

In software engineering, the term severity is commonly used to describe how harm-
ful a certain type of issue (e.g. architectural smells) is with respect to (w.r.t) a certain
quality attribute (e.g. Maintainability). Severity is used to gauge the impact of dif-
ferent instances of the same type of smell and decide which one is more harmful to
the maintainability of the system [Marinescu, 2012].

Similarly to the case of code smells [Arcelli Fontana and Zanoni, 2017,
Arcelli Fontana et al., 2015a] and design flaws [Marinescu, 2012], the severity of
an architectural smell is determined by the properties of the structure of the smell
instance itself, measured by smell characteristics presented in Chapter 2 (Table 6.1).
For example, assuming all the other characteristics are equal, a cycle with 5 nodes
and 5 edges is much easier to refactor than a smell with 5 nodes and 20 edges.

1There is also a more practical reason described in Section 6.3.3.
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Marinescu, Vidal et al., and Tsantalis et al. proposed approaches to cal-
culate severity based on a number of metrics related to the flaw in question
[Marinescu, 2012, Vidal et al., 2016, Tsantalis and Chatzigeorgiou, 2011], including
cohesion, coupling, past changes, and complexity. Our approach is similar as we
calculate severity by using architectural smell characteristics (see Chapter 2) to
measure certain properties of a smell instance (and therefore, indirectly, of the arte-
facts affected). Smell characteristics were used in previous studies on architectural
smells for calculating the ATD index [Roveda et al., 2018], and to manually deter-
mine the severity label for a code smell to be used by machine learning models as
well [Arcelli Fontana and Zanoni, 2017].

Defining extent

We define as the extent of an architectural smell the number of lines of code in
a source code artefact that break the rules used to detect an architectural smell.
For example, in the case of a cyclic dependency between two files, the lines of
code in those two files that are responsible for the dependencies creating the cycle
among them. In general, the purpose is to calculate how extended a smell is within
the system in order to gauge the amount of complexity that a developer needs to
understand and tackle while applying meaningful changes to the codebase in order
to remove the smell. The LOC metric was consistently used by previous studies as
a proxy of complexity [Morasca and Russo, 2001, Kitchenham and Mendes, 2004,
Morozoff, 2010].

Practically speaking, we take into account how many lines of code of the system
must be changed, or must be taken into consideration (understood), in order to
eliminate the smell from the code base. This approach resembles previous research
on the topic [Nugroho et al., 2011], where lines of code where used as a starting
point for the estimation of the effort.

6.3.3 Calculation of the index

This section details the steps necessary to calculate ATDI (Equation 6.3) for the
architectural smell types we take into consideration in this study.

Calculating severity

The severity of an architectural smell depends on several factors, making it hard to
derive rules of thumb for determining when a smell is more severe than another.
For example, a Cyclic dependency A between 10 classes may be less severe than a
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cycle B between 5 packages, despite affecting more elements (i.e. larger size). Yet,
another cyclic dependency C affecting 10 classes can be more severe than B if the
elements belonging to C cross package boundaries [Laval et al., 2012]. Therefore,
just relying on one or more smell characteristics (e.g. size and affected type) is not
very helpful.

To calculate severity, we will instead use a specific class of machine learning
(ML) models that are able to rank different smell instances in order of their severity.
This class of ML models is typically referred to as learning to rank (LTR) models
[Liu, 2009]. A LTR model is trained using a list of documents (e.g. web pages) that
have some partial order defined among them (e.g. relevance to a certain query).
The order is typically induced by giving a numerical or ordinal score to each item
in the list. The goal of the LTR model is to produce a permutation of items (i.e.
rank them) in new lists (i.e. not part of the training set). Formally, given a list
of architectural smells X = x1, x2, ..., xn, LTR models try to learn a function f (X)
that predicts the relevance (i.e. the severity in our case) of any given smell xi. The
relevance is usually a numerical or ordinal score: the higher the value, the more
relevant (severe) the smell is.

The main difference of LTR models from traditional classification or regression
models, is the training process. An LTR model tries to optimise for the ranking of
the whole training set, whereas classification and regression models try to minimise
the error of the predicted and actual label/value of each entry in the training set.
Using the terminology from our domain, LTR models try to minimise the number
of times a more severe smell is ranked below a less severe smell.

LTR models are trained using labels that determine relevance, where higher
values imply higher relevance2. Therefore, our data set will have pairs such as
〈xi, s〉, where xi is the smell and s ∈ [1, 10] ⊂ N is the severity label that our
algorithm is trying to learn. A smell xi is represented using its characteristics as
features, such as the number of elements affected, the number of edges, the page
rank in the dependency network of the system, and several others. More details
on the training process and creation of the data set are provided in Section 6.6.

Calculating extent

The calculation of the extent of an architectural smell depends on the rules used
to detect the architectural smell. For our approach, we are focusing on four types
of architectural smells: Cyclic Dependency (CD), Hublike Dependency (HL), Un-
stable Dependency (UD) and God Component (GC). The calculation of m from

2See https://lightgbm.readthedocs.io/en/latest/Parameters.html.

https://lightgbm.readthedocs.io/en/latest/Parameters.html
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Figure 6.1: An example of Cyclic Dependency removal. Based on Lippert’s example
[Lippert and Roock, 2006, p. 128].

Equation 6.3 for these four smell types translates into two different cases:

• for dependency-based smells (such as CD, HL, UD), we have the number of
lines of code generating and using the dependencies between the artefacts
taking part in the same smell;

• for size-based smells (such as GC), we have the number of lines of code
exceeding the median lines of code of packages/components in the system.

The upcoming paragraphs will cover in detail the reasoning behind these choices.

Dependency-based smells For CD, HL and UD, the number of lines of code using
and generating the dependencies creating the smell has been selected as a proxy to
calculate m. Effectively, these are the lines of code contributing to the smell creation
(i.e. the dependencies), and therefore they must be taken into consideration during
refactoring. However, this does not imply that all dependencies are going to be
removed, but the complexity of removing the smell is a function of the number of
lines of code creating and using those dependencies.

As an example to better understand the reasoning behind this approach, let us
take into consideration the case of a CD smell instance between two classes A and B
(see Figure 6.1). In order to remove it, the traditional way [Lippert and Roock, 2006,
p. 128] is to split B in two (or more) segments B1 and B2 and separate dependencies
in such a way that A depends on B1 (or A→ B1), and B2 depends on A (or B2 → A).
This process implies that the developer must be familiar with all dependencies
between A and B. For the sake of the example, let us assume that each line of code
contains one dependency only. Then, we calculate, we count all the lines of code
in A that use or create the dependency A→ B, and those for B→ A. Then we have
m(x) = m(A→ B) + m(B→ A) = 50 + 15 = 65 LOC, which is the number of lines of
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code one needs to understand before deciding on how to split B and proceed with
the refactoring. In Figure 6.1, only m(B→ A) = 15 LOC were eventually moved to
a new class, but the whole 65 lines of code were needed to be understood before
refactoring the 15 creating the dependency B→ A.

An architectural smell is comprised of several artefacts. Each artefact has a
series of dependencies towards other artefacts, which we consider as edges (i.e.
A→ B). We calculate

m(x) =

Ex∑
w(a→ b) (6.4)

where
Ex = {a→ b|a, b are classes or packages affected by smell x}

and w(a → b) calculates the number of times artefact a uses artefact b. By use we
mean any time a declares a variable of type b, invokes a method on an object of
type b, accesses a field of an object of type b, or inherits from type b. The way we
calculate dependencies complies with the benchmark and guidelines provided by
Pruijt et al. [Pruijt et al., 2017].

One can also see the m function as a special, finer-grained case of the dependency
edge weight function defined by Laval et al. [Laval et al., 2012], where instead of
counting the import statements only, we count all the lines of code directly using
such dependency.

An advantage of m(x) is that it allows to handle the overlap between smells at a
fine-grained level and avoid overestimation of the final effort calculated to remove
all the smells (i.e. a single edge may be responsible for the creation of multiple
smells). This is simply achieved using the following generalisation of Equation 6.4:

m(x) =

Ex∑ w(a→ b)
o(a→ b)

(6.5)

where the contribution of each edge a → b is weighted by the number of smells
that edge contributes creating, calculated by o(a→ b).

Another advantage is that it allows to identify which edges yield the highest
return on effort invested if removed, because one can target the edge with lowest
use and highest number of smells passing through it. Additionally, it allows to only
include the edges that actually create the smell, for example, for UD smell, m(x)
may only include the edges that create dependencies towards less stable packages.

In Arcan, this feature is implemented by relying on Spoon [Pawlak et al., 2015]
to precisely calculate the lines of code generating a dependency (as defined by
Pruijt et al. [Pruijt et al., 2017]).
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Size-based smells God Component is a smell that is detected based on the num-
ber of lines of code an artefact has (calculated summing up the LOC of the di-
rectly contained files) and whether it exceeds a certain threshold. The thresh-
old is calculated using an adaptive statistical approach that takes into consider-
ation the number of LOC of the other packages in the system and in a bench-
mark of over 100 systems [Arcelli Fontana et al., 2015b]. The adaptive thresh-
old is defined in such a way that it is always larger than the median lines of
code of the packages/components in the system and benchmark. Therefore, the
goal of refactoring a God Component is to reduce the total number of lines of
code in the system to be in line with the rest of the components in the sys-
tem (i.e. get closer to the median of the system). As mentioned earlier, the
lines of code metric is a known predictor of complexity [Lippert and Roock, 2006,
Morasca and Russo, 2001, Kitchenham and Mendes, 2004], therefore to formalise
this concept we define

δ(x) = LOC(x) − Tmedian (6.6)

where LOC(x) calculates the lines of code of in the artefact affected by the smell x,
and Tmedian is the median size of components in the system.

However, just the bare number of lines of code is not fully indicative of the
effort. The number of elements and the connection among those elements is a
variable affecting the difficulty of performing such task. The more elements (and
connections among them) there are in a component, the lower its Understandability
[Lippert and Roock, 2006, p. 32] and the higher their coupling. Therefore, we
define the extent of a god component architectural smell as

m(x) = δ(x) ·

√
|Ex|

2|Vx|
(6.7)

where |Ex| ≥ 1 and |Vx| ≥ 1 are the number of edges and vertices respectively,
contained in the subgraph created within the artefact affected by x. The second
term in Equation 6.7 ensures that if there is loose coupling among the elements
contained in the component affected by x, then the overall value is lower, because it
is easier to identify what files to move to another component, or what files to split
into multiple files before moving them. The square root is used to reduce the effect
on the final result. Indeed, early experimentation without the use of the second
term resulted in over-estimations of the index in cases were the internal elements
of a package were loosely coupled.
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Summary definition

The m function has a different definition based on the type of smell evaluated. To
avoid misunderstandings, we formalise this in the present section by defining m as
follows:

m(x) =


∑Ex w(a→b)

o(a→b) if x is a CD, HL, or UD instance

δ(x) ·
√
|Ex |

2|Vx |
if x is a GC instance

(6.8)

where x is an architectural smell instance, and the rest of the variables and functions
are the same as defined in the previous sections.

6.4 Case study design

To evaluate the approach described in Section 6.3, we followed the guidelines
proposed by Runeson et al. [Runeson et al., 2012] to design an holistic multiple-
case study. Case studies are commonly used in software engineering research to
study a phenomenon in its real-life context [Runeson et al., 2012]. We opted to
perform a case study because it allows us to investigate the practical application
of our approach in the context of both industrial and open-source projects. In the
next sections we elaborate on the study design.

6.4.1 Goal and research questions

The objective of the case study is to evaluate the accuracy, transparency, and rele-
vance of our approach that estimates architectural technical debt principal using
architectural smells. Using the Goal-Question-Metric [van Solingen et al., 2002]
formulation, the objective is stated as follows:

Analyse the approach estimating architectural technical debt principal for the
purpose of validating its application with respect to accuracy, transparency,
and relevance of the estimation output from the point of view of software
developers in the context of open-source and industrial software systems.

The goal can be further refined into the following two research questions, reflecting
accuracy and relevance respectively:

RQ1 Can the approach rank architectural smells by their severity?

RQ1.1 How accurate is the ranking of AS by different ML models?

RQ1.2 How do smell characteristics impact the predictions of severity?
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Essentially, we are interested in the accuracy and transparency of the output of
the approach, i.e. the principal. Our approach uses two factors to estimate the
principal of each smell instance: severity and extent. We do not need to validate
the accuracy and transparency of the smell extent, as that can be measured directly
on the source code generating the smell. Thus, RQ1.1 concerns the accuracy of
calculating smell severity, and particularly the accuracy of the machine learning
model in ranking architectural smells by their severity. We will assess the accuracy
of the model using an evaluation metric specific to ranking tasks as described in
Section 6.4.3. RQ1.2 focuses on measuring the transparency of the machine learning
model. Namely, it will explain how the model effectively makes predictions on new,
unseen instances, thus allowing us to better understand which smell characteristics
make a smell more severe than another. This will also ensure that the model is not
using undesired variables to predict the severity of a specific smell (e.g. the Shape
characteristic is only used for CD instances, and should be be used to predict the
severity of a HL).

RQ2 Is the principal estimated by the approach relevant to software developers?

RQ2.1 Does the estimated principal represent the effort necessary to refactor
an architectural smell?

RQ2.2 Are the size and order of the estimations of individual smells meaningful
in relation to each other?

RQ2.3 What do software developers think about the proposed approach over-
all?

This research question assesses if the whole approach is relevant, in terms of pro-
viding an actionable output to developers (i.e. can they make decisions using the
output provided by the approach?). We answer this research question by answer-
ing the three sub-questions. RQ2.1 focuses on how far the estimated principal
correlates with the effort expected by the engineers to refactor a certain instance.
This would allow engineers to reliably plan the allocation of their resources (e.g.
time) during the repayment phase. RQ2.2 focuses on whether the approach allows
comparisons between different smell instances (e.g. if this smell’s estimated ATDI
is x then it makes sense for the other smell’s ATDI to be y). If indeed the magnitude
and relative size of the estimations with respect to each other are meaningful, then
the approach provides the means to make evidence-based prioritisation decisions for
resolving smells. Finally, RQ2.3 aims at understanding the general opinion of soft-
ware developers towards architectural smell analysis and the estimations provided
by ATDI.
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6.4.2 Detailed overview of the case study

The two research questions (RQ1 and RQ2) correspond, respectively, to two differ-
ent phases of this study: model engineering & verification and model validation.
Figure 6.2 depicts a detailed overview of these two phases, while Section 6.4.3 and
Section 6.4.4 respectively describe the two phases in detail.

A replication package of this study is available online3 and contains all the
material used to design this case study.

6.4.3 RQ1: Model engineering & verification

Dataset creation

Sampling the smells To answer RQ1 we trained a machine learning model to rank
architectural smells by their severity. The first step necessary to do so, as shown in
Figure 6.2, step (a) was to collect the data necessary to train the machine learning
model, i.e. the architectural smells. This entailed choosing a set of projects to mine
the smells from using Arcan (see Section 6.2). The selection criteria to choose the
projects were the following:

1. The projects must have more than 10,000 LOC;

2. The projects must have at least one instance of each architectural smell type;

3. The annotators must be familiar with the architecture of the system they are
annotating.

These criteria ensured respectively that: 1) the projects selected were sufficiently big
to contain enough architectural smells; 2) for each project there can be a comparison
between all smell types; 3) the annotated smells affected parts of code that the
annotators were familiar with, thus being able to provide a relevant annotation. The
projects selected by this process are shown in Table 6.2, along with the number of
smells sampled from each project. Smells were sampled using stratified sampling
based on their type and project. Namely, we tried to import as many smells as
possible of the less frequent types (i.e. GC) while also preventing to bias our data
set by sampling too many smells from the larger projects (e.g Spoon and JMeter).

Annotation set creation The smells sampled from the selected projects were then
used to create an annotation set that contained, for each record, a pair of smells

3Visit https://dx.doi.org/10.6084/m9.figshare.19823323 to access it.

https://dx.doi.org/10.6084/m9.figshare.19823323
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Figure 6.2: Detailed diagram of the model engineering and model evaluation
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Table 6.2: The projects used for sampling smells and the number of smells compared
as well as the number of comparisons.

Project #Smells sampled #Smells compared #Comparisons

Arcan 55 14 23
AStracker 28 7 7
Emma 54 10 15
JMeter 154 22 77
JUunit4 29 7 7
Spoon 155 22 77
Spring-boot 92 15 35
Struts2 84 14 30

Total 651 111 271

and an annotation denoting which one of them is the most severe one. As one
can see in Figure 6.2, step (b), annotations were manually created using pairwise
comparison, a process for annotating entities [David, 1963] where an annotator is
asked to compare two entities w.r.t. a certain quantitative property and provide a
qualitative judgement on which one of the two entities is best. The main reason
for using pairwise comparisons over rating scales (e.g. Likert scale) is that it
avoids several problems typical of rating scales. More specifically, rating scales
are relative, which means that a value of 4 may not represent a similar quantity
for two different individuals. Also, the quantity represented for one individual
may change during the questionnaire (e.g. after answering more questions) or if
repeated in different days [Perez-Ortiz and Mantiuk, 2017], whereas, if two smells
are compared twice and obtain discordant ratings, their final ranking will just
depend more on the annotations where the two smells were compared with other
smells. These disadvantages make a rating scale, such as a Likert scale, a poor
choice for this step.

The main drawback of pairwise comparison is the very large amount of com-
parisons necessary to achieve an order among the elements compared. Pairwise
comparisons necessitates

(n
2
)

comparisons. If we want to create a data set with
n = 500 elements, then 124,750 comparisons are necessary. This number is infeasi-
ble for the purposes of our study; therefore, we adopted an array of techniques to
reduce this number while at the same time increasing the number of elements in
our data set:

1. Active Sampling is a technique that chooses the pairs to compare based on
which one gives the most amount of information [Mikhailiuk et al., 2021].
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This technique is basically a compromise between number of comparisons
and accuracy of the ranking with respect to the ground truth (i.e. the or-
der obtained by doing

(n
2
)

comparisons). The more comparisons are per-
formed, the lower the error accumulated. Moreover, active sampling al-
lows to reduce this error much faster than random selection of pairs to com-
pare. Several state-of-the-art techniques exist to perform this task, but ASAP
[Mikhailiuk et al., 2021] is the latest and fastest at the moment of writing.
With this technique, we are guaranteed to reach at worse a 15% error within
1
3
(n

2
)

comparisons.

This technique alone, however, is not sufficient to reduce the number of
comparisons to a feasible amount.

2. Initial ranking gives an initial estimation of the final rank of the smell based
on the architectural smells characteristics of each instance (i.e. the number
of elements affected, number of dependencies, etc.). The calculation of the
initial ranking is based on previous work on architectural smell ranking
[Laval et al., 2012] and on smell characteristics.

This allows to avoid comparisons of smells that are clearly at the two ends of
the ranking range (e.g. a cycle of size 20 and a cycle of size 3).

3. Neighbourhood Representative Sampling (NRS) is based on the core concept be-
hind the k-nearest neighbours (k-NN) algorithm, a classification and regres-
sion model widely used in machine learning [Fix and Hodges, 1989]: similar
instances will probably have a similar classification. This rationale can also be
applied to the initial ranking, namely, similar instances will have a similar initial
ranking. Therefore, if we choose k as the number of neighbourhoods and ‘ap-
point’ one representative for each neighbourhood, we only have to compare k
elements rather than n. Obviously, the smaller the value of k, the more precise
the final ranking. We selected k with the following formula k = blog2 nc for
all n ≥ 5, otherwise we used k = 1 (i.e. compared all smells).

4. Intra-project comparisons entails comparing smells from the same project only.
It is justified because comparing two smells from two different projects is not
intuitive and there are no common points that an annotator can use to make a
proper comparison. For example, the depth in the package containment tree
(PCT) of the affected elements, a well-known smell characteristics used for
ranking [Laval et al., 2012], would be hard to apply by a human as different
projects have different PCT structures.
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These four techniques are combined as follows: we first assign an initial ranking to
each smell; then, we choose k neighbourhoods and pick a smell that has the most
similar initial ranking in that neighbourhood and designate it as its representative;
next, we perform pairwise comparisons among the representatives using active
sampling until we obtain an order among the representatives; finally, the ranking is
extended to the other smells in the neighbourhood. This whole process is contained
in Figure 6.2 under the step (b), for the sake of simplicity.

The next question is how to go from triplets in the form of
〈smell1, smell2, annotation〉 (i.e. the output of the comparison process in step (b))
to a ranked order among the elements compared – which brings us to step (c).
There exist several algorithms that perform this task, but we opted for one of
the most common solutions both in industry and academia, namely TrueSkill
[Herbrich et al., 2006]. TrueSkill has been used extensively in information retrieval,
learning-to-rank models, and even in software engineering to decide on how to as-
sign tasks to components in simulation systems [Wienss et al., 2013], or to study
the biases present in case studies analysing the language adoption of software de-
velopers [Meyerovich and Rabkin, 2012]. The TrueSkill algorithm seems the most
pertinent for our purposes given its application in other software engineering re-
search studies, as well as the wide availability of its implementation.

Data set creation and annotators agreement After completing step (c) from Fig-
ure 6.2, we obtained a data set of 651 smell instances (see Table 6.2) that were
ranked according to their severity, requiring 271 comparisons. Comparisons re-
quired around 5 minutes each, and the whole process took 22 hours split among 3
annotators. The annotation team was comprised of two Ph.D. students (including
the first author) and a research assistant. Inter-annotator agreement was measured
using Fleiss’s Kappa [Fleiss, 1971], obtaining a .88 score (considered ‘almost per-
fect agreement’ [Fleiss, 1971]). Three test run rounds were necessary to achieve a
score greater than .8 (i.e. greater than ‘moderate agreement’ [Fleiss, 1971]). We
ensured all three annotators used the same decision-making process to annotate
the data by devising a set of rules, available in the replication package4 along
with the resulting annotations. Those rules were based on the available literature
[Laval et al., 2012, Al-Mutawa et al., 2014], our own experience on the subject, and
the feedback during the three test rounds.

The distribution of the labels obtained through this process is depicted in Fig-
ure 6.3. As it can be noted, CD smells are distributed almost perfectly across
the domain of severity, whereas the other smells are skewed towards higher val-

4Visit https://dx.doi.org/10.6084/m9.figshare.19823323 to access it.

https://dx.doi.org/10.6084/m9.figshare.19823323
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Figure 6.3: Distribution of (severity) labels obtained through our annotation pro-
cess. Original data points are showed with slight jitter for better visualisation.
Severity was rounded to 0 decimals in order to comply with LightGBM require-
ments.

ues. This is because CD smells are much more easily detectable and there ex-
ist many more instances that pose little threat to the maintainability of a system
[Al-Mutawa et al., 2014, Laval et al., 2012]. This is, in contrast, rather unlikely for
a GC or HL instance. The distribution of the number of different types of smells
is representative of the typical distribution found when analysing other software
systems (see Chapter 5).

The training of the machine learning model was done using a 7-fold cross
validation (step (d)) and we evaluated ranking performance using normalised
discounted cumulative gain (step (e)). This step (step (e)) allows us to measure
the accuracy of the ML model, i.e. to answer RQ1. Further details on the training
and performance obtained are reported in the next section.

Training strategy & evaluation metric

To select the most suitable model for our task, we relied on the current state-of-the-
art library for LTR tasks: LightGBM [Ke et al., 2017]. The training process used is
k-fold cross-validation [Stone, 1974], a process where the data set is divided into
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k equal partitions with one partition that acts as test set and the rest as training
set; the process is then repeated until all k partitions acted as test set. The main
advantage of using cross-validation over classic approaches such as plain train/test
partitioning is the reduction of selection bias, ensuring that the model performs
similarly regardless of the seed used to partition the data set.

The metric that is most suitable to evaluate the performance of our model is
Normalised Discounted Cumulative Gain (NDCG) [Järvelin and Kekäläinen, 2002].
NDCG is the most common metric used in information retrieval to evaluate the
efficiency of an algorithm to retrieve results in a certain order [Wang et al., 2018].
As an example of its use in software engineering studies, it was used to evaluate
the relevance of algorithms retrieving architectural knowledge from StackOverflow
[Soliman et al., 2018].

The goal of our task is to minimise the number of times a severe smell is ranked
below a less severe smell. NDCG matches perfectly our goal, as it penalises smells
appearing lower than less severe smells in a ranked result list.

The formula of NDCG is as follows

NDCG =
DCG
IDCG

=
1

IDCG

n∑
i=1

`i

log2(i + 1)

where `i is the severity label of the smell at position i, DCG is the discounted
cumulative gain, and IDCG is the DCG calculated on the sequence of retrieved
elements in the ideal order (i.e. we sort results by `i such that smells with higher
values of `i appear first).

The NDCG metric (unlike DCG) is defined in the interval [0, 1], with higher
values meaning better performance/ranking of results. In most scenarios, NDCG
is calculated only for the first n elements of the test set, denoted as NDCG@n. By
combining multiple measures of NDCG@n for different values of n, one can gauge
the performance on incremental sub-lists of the result. In other words, n restricts
the focus on the performance obtained by classifying the top n most severe smells
in the test set.

6.4.4 RQ2: Model validation

Figure 6.2 depicts the process used for the validation of the model (red frame).
In particular, we detect architectural smells in open-source and industrial sys-
tems, use the machine learning model developed in RQ1, calculate ATDI through
calculating extent and severity, and then collect the opinions of software prac-
titioners about the output. The opinions are solicited through interviews,
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Context 1 (Open Source) Context 2 (Industry)

Case 3 (Project 3)
Unit of Analysis 3 

(Engineer)

Case 4 (Project 4)

Unit of Analysis 4 
(Engineer)

Case 1 (Project 1)
Unit of Analysis 1 

(Engineer)

Case 2 (Project 2)

Unit of Analysis 2 
(Engineer)

Figure 6.4: Mapping of cases and units of analysis for RQ2; based on Figure 3.1 by
Runeson et al. [Runeson et al., 2012].

which, as a direct data collection technique, allows researchers to control ex-
actly what data is collected, how it is collected, and in what form it is collected
[Runeson et al., 2012, Lethbridge et al., 2005].

Cases, subjects and units of analysis

The cases of our study are the projects analysed whereas the context is either
open-source or industry; Figure 6.4 illustrates as an example, two cases from each
context, from a total of sixteen cases. Finally, the units of analysis correspond to
the software practitioners interviewed. Since each case contains a single unit of
analysis, the design of the case study is multiple and holistic (see Runeson et al.
[Runeson et al., 2012]).

Tables 6.3 and 6.4 list the participants of the interviews, alongside their respec-
tive background information; the sample contains 9 engineers from open-source
projects and 7 from industrial projects. We opted to interview one engineer per
project (both for open-source and industrial projects) in order to maximise the vari-
ance of information obtained and avoid overlaps, thus extending external validity.
Note that most of the participants from open-source projects are also employed in
industry.

The open-source participants were selected through the following process:

1. We first collected a list of open-source projects featured in other re-
cent studies on Technical Debt that involved interviews and/or surveys
[Tan et al., 2021, Maldonado et al., 2017, Zampetti et al., 2021]. This ensured
that the candidate projects contained technical debt and resulted in selecting
21 open-source projects (listed in Figure 6.6);
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2. We listed the most active contributors from the repositories of such projects
(top 10% of number of commits in the last year). We selected the most active
contributors to ensure that they had deep understanding of the system (or of
a specific part of it) and that they were up-to-date with the latest code. This
resulted in over 260 contacts, and after removing bots and invalid emails we
ended up with 230 contacts;

3. We sent out 230 invitation emails and received 37 responses, of which 11 of
them contained a positive response and eventually 9 resulted in an interview.

To select the industrial participants, we used purposeful sampling
[Palinkas et al., 2015]. Specifically, we got in touch with two companies from our
professional network and asked them whether they were willing to participate in
the study. The two companies are both small and medium-sized enterprises5 that
operate in the IoT and Enterprise Application domains, respectively. Next, we
asked them to provide us with (1) a list of Java projects that had at least 10,000 lines
of code, and (2) a list of engineers working on these projects that were willing to
take part in the interviews.

Overall, the sample is comprised of 16 engineers (and their respective projects),
characterised by a wide variety in total number of years of experience and techno-
logical background (e.g. distributed systems, testing, security, etc.). Of course, no
sample is perfect, and we elaborate on the threats to external validity entailed by
the composition of our sample in Section 6.9.

Data collection

Interviews were held following the guidelines mentioned by Runeson et al.
[Runeson et al., 2012]. The interviews lasted 30-35 minutes and were semi-
structured in their format, meaning that the interviewer could deviate from the
original list of questions if a certain answer given by the participant was inter-
esting to explore in more depth. The replication package contains the interview
invitation and the questionnaire with the list of questions6. Each interview invita-
tion contained (1) a one-pager with the definitions of the smell types discussed in
the interviews; and (2) a letter informing the participant of the confidentiality of
the interview as well as their right to not answer any question they do not wish to
answer [Runeson et al., 2012]. Before the interview started, both aforementioned
points were reiterated to the participants to ensure that they were familiar with the

5See https://ec.europa.eu/growth/smes/sme-definition_en.
6Visit https://dx.doi.org/10.6084/m9.figshare.19823323 to access it.

https://ec.europa.eu/growth/smes/sme-definition_en
https://dx.doi.org/10.6084/m9.figshare.19823323
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Table 6.3: List of participants from the open-source projects. Note that the ‘Role
in project’ column was shuffled to protect the anonymity of the participants. For
example, P1 is not an idependent contractor, but one of the other participants is.
Abbreviations: Partic.: participant; OS: open-source; IN: industry; Exp.: experi-
ence; PMC: Project Management Committee; MC: Main Contributor.

Partic. Project
Exp. in OS/IN
(Years)

Role in project

P1 Hadoop 12 / 8 Independent Contractor
Team lead and MC
PMC member & Contributor
Security Engineer
PMC member
PMC member & contributor
Lead maintainer
Contributor
Project lead and MC

P2 DBeaver 5 / 18
P3 JUnit5 12 / 14
P4 RxJava 10 / 15
P5 Jenkins 18 / 11
P6 Hibernate 20 / 20
P7 Cassandra 8 / 24
P8 Camel 18 / 20
P9 HBase 16 / 20

Average 13.1 / 16.6

Table 6.4: List of participants from the industrial projects. Abbreviations: mgmnt.:
management; Partic.: participant; Exp.: experience.

Partic. Company Project
Exp.
(Years)

Role

P10 C1 IoT Framework 3 Developer

P11 C1
Document
mgmnt. system

15 Senior developer

P12 C2
Project mgmnt.
tool

22 Product manager

P13 C2
Rent mgmnt.
API service

8 Senior developer

P14 C2
Parking occu-
pancy meter

6 Full-Stack developer

P15 C2
Financial assets
mgmnt.

6 Senior developer

P16 C2
Subscription
mgmnt.

3 Developer

Average 9
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technical concepts discussed during the interview and that they agreed with the
terms of the interview.

During the interviews, we showed the participants one instance of each ar-
chitectural smell type. If one type was not detected in the particular system, we
replaced it with an instance of a type already included, so as to ensure we collect
the same amount of data from every engineer. Smells were chosen from parts of
the system that the participants indicated to be most familiar with. The smells
were visualised graphically as a network where nodes corresponded to classes
and packages, and edges corresponded to the dependencies among them. Each
smell was accompanied by a number representing the effort necessary to refactor
that smell (i.e. the ATDI). Next, each participant was asked whether they agree
with the information presented for each instance while also keeping in mind the
estimations provided for the other instances. This ensured that their answers were
consistent among different smell instances. Finally, each participant was asked to
explain their answer and particularly their rationale. This process allowed us to
minimise the amount of explanation provided to the participants (reducing the risk
of confusion and bias).

Overall, the data collected for each participant are the following: (1) background
information regarding their expertise; (2) whether they find the estimated principal
to be representative of the required refactoring effort (RQ2.1); (3) whether they
think the order and proportions of the principal estimations were consistent among
the instances presented (RQ2.2); (4) the rationale behind their answers on points
(2) and (3); and (5) their feedback on the whole analysis (RQ2.3).

Data analysis

To analyse the data collected through the interviews, we adopted the Constant
Comparative Method (CCM) [Glaser and Strauss, 2017, Boeije, 2002], which is part
of Grounded Theory [Glaser et al., 1968]. Grounded Theory (GT) is one of the most
important methods in the field of qualitative data analysis. It has been used exten-
sively within both social sciences and software engineering and provides a struc-
tured approach to process and analyse the data collected from multiple sources. GT
increases the theoretical sensitivity of the researcher as the data analysis progresses
and eventually allows to formulate hypotheses and theory [Glaser et al., 1968].

The CCM is an inductive data coding and categorisation process that allows
a unit of data (e.g., interview transcript, observation, document) to be analysed
and broken into codes based on emerging themes and concepts; these are then
organised into categories that reflect an analytic understanding of the coded entities
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Phase CPhase BPhase A

Study the material

Define codes

Read and code the
material

Reformulate, split and
categorize codes

Code analysis

Take notes of findings

Figure 6.5: The qualitative data analysis process.

[Mathison, 2005].
The qualitative data analysis requires interviews to be transcribed before any

of the techniques mentioned above could be applied. Transcriptions were done
as soon as batches of 2-3 interviews were completed, whereas data analysis was
done iteratively. Each iteration of the data analysis process is presented in Figure
6.5 and is comprised of 3 phases. During the first phase (Phase A), the collected
material (i.e. the initial interview transcripts) was studied and a code map was
created to organise the codes used to tag the data. After completing this phase, the
coding process started (Phase B), which also involved updating and re-organising
the codes based on the new understanding of the data. Gradually, more interviews
were recorded, transcribed, and coded and notes were taken with the aid of the
coded data (Phase C). In total, three iterations of data analysis were done (i.e. three
times the whole process from Figure 6.5): the first for the interviews with open-
source engineers, the second with the industrial engineers, and the third to ensure
that the codes added along the way were present in all the data. The whole process
was performed by the first author of the chapter, while the second author reviewed
the codes and coding schemes as they were developed to reduce the risk of biases
(e.g. confirmation and information bias). To automate the data analysis as much
as possible, we relied on Atlas.ti7, a dedicated qualitative data analysis tool.

6.5 Descriptive statistics of ATDI

Before presenting the results of the two research questions, we briefly present some
descriptive statistics about ATDI and derive some observations. These should pro-

7See https://atlasti.com/.

https://atlasti.com/
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vide more context on the results of both RQ1 and RQ2 and allow us to understand
the statistical nature of the estimations provided by the approach.

These statistics concern the same 21 projects from which we collected the names
of the open-source participants for RQ2 as well as the 7 industrial projects; in total,
ATDI was calculated for more than 41,000 smell instances of these 28 projects.
Figure 6.6 shows both the values of ATDI for each architectural smell instance and
the value of ATDI density for the 28 projects considered. The left-hand side plot
depicts the total ATDI density for all projects, ordered from the most ATDI-dense
project to the least. The right-hand side plot depicts the distribution of ATDI for
each AS instance in the 28 projects. From the statistical analysis of the data depicted
in Figure 6.6, we note the following:

1. the highest density project is ElasticSearch with 3,345.8 ATDI for each KLOC,
despite being the second largest system analysed;

2. the lowest density project is JUnit5, with 16.2 ATDI for each KLOC;

3. an overall lower ATDI density in a project does not always imply smells with
lower individual ATDI. In particular, projects with lower ATDI density than
Antlr4 (i.e. below it in Figure 6.6), show a large variance in the ATDI of the
individual instances;

4. 50% of AS instances have ATDI ≤ 161, and 33% of instances have ATDI ≤ 100;

5. there are only 37 smells with an ATDI ≥ 750 (less than 0.001% of all smells
analysed);

6. the maximum ATDI is 8,505 by a HL smell in Jenkins;

7. the minimum ATDI is 11, by three CDs with low severity in Camel, Cassandra
and Dubbo respectively;

Finally, Figure 6.7 depicts the distribution of ATDI for different types of AS.
There is a clear difference between the four types of AS. GC instances are the ones
with the highest ATDI principal on average, followed by HL, CD and lastly UD.

6.6 RQ1 results

6.6.1 RQ1.1: ML model accuracy

Table 6.5 summarises the NDCG@n values obtained through cross-validation on our
data set by different models. We recall from Section 6.4.3 that NDCG@n provides
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Figure 6.6: On the left, the total amount of principal (ATDI) per 1,000 lines of code
(KLOC) for each project (calculated using Equation 6.2) compared with the number
of KLOC. On the right, boxplots depicting the distribution of the principal (ATDI)
calculated for each AS instance (outliers not visualised).

higher values when the model consistently ranks severe instances above less severe
ones. Note that we opted for 7-fold cross-validation8 over the typical 10-fold
because in our case it increases the size of the test set significantly (from 65 to 93)
while it also reduces overfitting (i.e. we obtain much lower variance with k = 7).
The results show that the best-performing algorithm is ‘rank xendcg’, i.e. Cross-
Entropy NDCG Loss for learning-to-rank [Bruch, 2021], one of the most recent and
best-performing LTR algorithms. We refer the reader to the official documentation
of LightGBM for details on the other algorithms9.

Overall, ‘rank xendcg’ performs very well for all values of n. However, the most
severe smell is not always the very first smell in the list, but it does appear very
close to the top in several occasions given the score obtained for NDCG@1 = .99.
For values of n > 1, ‘rank xendcg’ settles around .90, meaning that most instances

8Folds are sampled using stratified sampling on severity, which is a typical practice in Machine
Learning.

9Visit https://lightgbm.readthedocs.io/en/latest/Parameters.html#objective.

https://lightgbm.readthedocs.io/en/latest/Parameters.html#objective
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Figure 6.7: Boxplots showing the distribution of ATDI for different types of AS
(outliers not visualised).

are ranked close to their true rank, but not all of them. When considering the
order obtained on the full size of the training sets (n = 93), the performance
reaches .97. This means that the most-severe instance is almost perfectly ranked,
the mid-severity instances are appropriately ranked but not quite perfect, while the
low-severity instances are almost perfectly ranked.

To make these results clearer, we give four examples of smells from our data
set in Figure 6.8; their actual severity is obtained through the process described
in Section 6.4.3, while the predicted one by the ML model. Figure 6.8a depicts
a CD smell with very low severity that affects one class and two of its internal
classes. Typically, this type of cycle is intentional, and given that the three classes
are always expected to be reused together, this cycle does not pose any threat to
maintainability, so it was labelled with the minimum severity of 1. The value
predicted by the model was 1.84, which is almost double the actual value, but it is
still rather close.

Figure 6.8b shows a rather severe HL instance affecting the main gui package in
the system10 and involving 31 other packages. Given that gui is aggregating a lot
of functionality (when in theory it should only be responsible for the user interface)
it was annotated with a severity of 10. The model’s prediction was a bit lower at

10Note that there are several packages called gui in JMeter.
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Table 6.5: Performance of different algorithms for different values of NDCG@n
using 7-fold cross-validation and the standard deviation over the folds. Bold
values represent the maximum in the row.

NDCG
@n

Algorithms

mse multiclass multiova
rank
xendcg

lambda-
rank

1 .91±.00 .77±.04 .94±.01 .99±.00 .99±.00
10 .87±.00 .86±.01 .88±.01 .90±.00 .82±.00
25 .89±.00 .87±.00 .87±.00 .90±.00 .87±.00
50 .93±.00 .91±.00 .92±.00 .92±.00 .90±.00
93* .96±.00 .95±.00 .96±.00 .97±.00 .95±.00

* size of the test sets for k = 7

9.11.
Figures 6.8c and 6.8d depict two smells of medium severity, both are CD smells

affecting 4 and 3 packages, respectively. Both smells were labelled as medium
severity of 5, because they affect packages of the system, are tightly coupled, but
are not too big in number of elements affected. The predictions provided by our
model for both smells were relatively close to the actual values.

To summarise, the goal of RQ1 was to check whether a ML model can accurately
rank AS by their severity. This is indeed the case and we were able to achieve a
score of 0.97 for NDCG@93, which is considered a very high score. However, there
is one caveat. When considering the accuracy of estimating severity for single
instances (rather than the overall rank) the model is less accurate, as shown by the
examples in Figure 6.8. Namely, the model is clearly able to predict the ranking of
the smells correctly, but the accuracy of the prediction is not perfect (Figure 6.8a).
Nevertheless, this is both expected and acceptable, as the goal for RQ1, was to
optimise for the global ranking of instances rather than the individual prediction.
Indeed, this is also what the ML model is optimising for.

6.6.2 RQ1.2: The contribution of smell characteristics to predic-
tions

Our model is able to predict quite accurately the severity of an architectural smell
instance; however, it is also important to understand what smell characteristics
are used, and how they impact the prediction. Namely, we want to improve the
transparency of the model by studying how it performs the predictions. To do so, we
used an approach called SHAP (SHapley Additive exPlanations). SHAP uses game
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(a) CD smell; Predicted: 1.84; Actual: 1.

(b) HL smell; Predicted: 9.11; Actual: 10.

(c) CD smell; Predicted: 5.28; Actual: 5. (d) CD smell; Predicted: 5.46; Actual: 5.

Figure 6.8: Example of architectural smells from our data set with their predicted
and actual severity. Smells are all from the JMeter project. The width of the edges
reflects the weight of the dependency, while the colour of nodes reflects the number
of weighted incident edges (red means higher values; blue lower).
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theory to link the input of a model (i.e. the smell characteristics) to its output (i.e.
the severity) [Štrumbelj and Kononenko, 2014] and explore the correlation visually.

Figure 6.9 depicts the importance of the smell characteristics (or features) ac-
cording to the SHAP method. Values on the x-axis represent the output of the
SHAP method: positive values entail that a feature contributed positively (i.e. in-
creased severity) to the output of the model whereas negative values provided a
negative contribution (i.e. decreased severity). We expect the model to match the
assumptions in the literature in order to establish that it works as intended.

The Size feature (i.e. number of affected elements) contributes the most to the
severity of the smell, with higher values of Size increasing the severity and small
values being neutral. The PageRank of the affected elements comes second, with
higher values positively contributing to the severity of a smell. This means that
elements that are more central in the dependency network of the system make
a smell more severe. The Number of edges feature has a similar impact as Size
(they are indeed correlated, see Chapter 2), but low values decrease the severity
of a smell, instead of being neutral. The metrics based on the Package Containment
Tree (PCT) [Laval et al., 2012, Al-Mutawa et al., 2014] were relatively important too.
High values of St.dev. PCT Depth, namely, when a smell affects both elements at the
top and bottom of the PCT, positively contribute to increase the predicted severity.
Similar with the St.dev. PCT Distance, namely, when a smell affects elements from
distant branches of the PCT. In both cases, it is interesting to note that the mean of
both Distance and Depth are less important than their standard deviation.

After considering these results, we can confirm that the way the model uses
the features reflects what is expressed in the literature. More specifically, the smell
gets more severe in cases when its size increases [Lippert and Roock, 2006], its
centrality in the dependency network of the system is higher [Roveda et al., 2018];
also, under the assumption that distant elements in the PCT are more likely to
implement different concerns [Laval et al., 2012], the smell affects elements that are
unrelated.

SHAP is also able to explain the output of single instances. Figure 6.10 depicts
the force plots on how smell characteristics (i.e. features) contributed to the predic-
tions shown in Figure 6.8. For the low-severity smell, Figure 6.10a shows that all
features contributed to reduce the predicted severity of the instance. The Number of
edges and PageRank features were the two main drivers for the decision. An almost
opposite situation can be observed in Figure 6.10b for the smell with the highest
severity, but in this case the high number of connections (i.e. Number of edges)
and the fact that smell involves several elements from different parts of the system
(i.e. high Std. dev. PCT Depth) were the two main drivers behind the prediction
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Figure 6.9: Importance as calculated by the SHAP method
[Štrumbelj and Kononenko, 2014]. The higher on the y-axis the higher the
importance. Positive values on the x-axis mean that the feature contributes to
increase the severity of a smell, whereas negative values do the opposite. Colour
is mapped to the value assumed by the feature.

of the model. Concerning the two smells with similar severity, we can notice in
Figures 6.10c and 6.10d that the PCT characteristics push for a higher severity, but
the size-based characteristics push for a lower severity. These two opposite forces
result in a decision that settles towards the middle of the output scale.

In summary, by showing what AS characteristics are used by our model (and
how) allows us to better understand what constitutes a severe smell and what does
not. More importantly, it increases the reliability of our study as we do not treat
the ML model as a black box. Instead, we provide data to explain why it works
well and that the identified reasons are in line with what we expected from the
literature.

6.7 RQ2 results

In this section we report on the results obtained by analysing the data collected
through our interviews. Note that this section concerns the estimations of the
index (as defined by Equation 6.3), which are calculated using severity (i.e. RQ1
model) but also the extent of the smell. In the upcoming sections, we first report
the opinion of the engineers on the estimations of architectural debt principal to
answer RQ2.1 and RQ2.2. Then, we report the general feedback we received from
the engineers concerning our approach to answer RQ2.3. Finally, we conclude by
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(d) Output explanation of Figure 6.8d.

Figure 6.10: Prediction explanation of how severity was calculated for smells in
Figure 6.8. The x axis represents the severity (i.e. output of the model), the blue
bars represent a reduction of severity (i.e. negative contribution to prediction). Red
bars represent an increase in severity (i.e. positive contribution to prediction). Each
segment belongs to a specific feature only. The size of the contribution corresponds
to the length of each segment and can be read on the x-axis. The value shown next
to each feature is the normalised value the feature assumes for the smell instance
(i.e. it is not the contribution). The number in bold shown above the x-axis is the
predicted severity for the instance.
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reporting on a few drawbacks and possible improvements of our approach.

6.7.1 Perception of the ATDI estimations (RQ2.1 & RQ2.2)

Overview

Overall, the feedback provided by the participants regarding how well the esti-
mated principal represents the refactoring effort (RQ2.1), was rather positive. Of
the 62 total smell instances that we discussed and their respective ATDI estima-
tions11, shown to the participants, 71% (44/62) of the estimations were described
as representative of the effort necessary to refactor. More specifically, responses on
industrial instances showed 81% agreement rate with the estimations provided by
the index, whereas for smell instances detected in open-source projects the agree-
ment rate with the index was 65%. Of the 29% (18/62) of total instances that were
off the mark, only 10 of them were off by more than 100. The other 8 instances were
off by less than 100, but since 6 of these were small instances, with an ATDI ≤ 100,
the relative error was higher, so they were perceived by the participants as a big
over-, or under-estimation. Note that from our descriptive analysis of ATDI (see
Figure 6.6), we know that only 33% of instances have an ATDI ≤ 100, so the extent
of the imprecision is limited to a small percentage of these 33% of instances.

Concerning the magnitude and relative size of the estimations (RQ2.2), 62%
(10/17) of the participants totally agreed with the relative size and order of the
estimations, while 26% (4/17) of the participants disagreed with the ranking of a
single instance only, and the remaining 12% (2/17) with more than one. Participants
interviewed on industrial projects had a much higher rate of agreement with the
ranking and relative size of the estimations than open-source participants. 85%
(6/7) of industrial participants completely agreed with the ranking and relative
size, whereas only 44% (4/9) of the open-source participants did so. The rest of
the open-source participants (5/9) made either one or two corrections to the order.
Note that these were mostly made on instances with an ATDI < 100.

The aforementioned numbers provide a quantitative overview of the perception
of the participants regarding the validation of ATDI. In the next sub-section, we
will give examples of six different cases, in order to provide a richer, qualitative
description of both the smells and the participants perception. The examples were
chosen to best represent the various aspects of our data set such as: (1) the ratio of
agreement/disagreement with estimations; (2) whether the project is open-source
or industrial; (3) whether it concerned large or small smell instances; and finally,

11Note that for a few participants we did not have time to discuss all 4 instances.
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(4) whether the cases simply presented more insights.

Example opinions of the participants

Example 1: RxJava This first example describes how two architectural smells of
two different types, GC and HL, are estimated and compared by participant P4.
The GC smell was detected on the package io.reactivex.rxjava3.core, directly
containing 52, 000 lines of code spread across 44 classes – much higher than the
average of 10, 000 lines of code circa detected in the other packages of the system.
P4 mentioned that the core package provides access to all the functionality of
RxJava through 5 core classes, described as “god classes”. For this reason, P4 was
exceedingly confident that the estimated value of 1,500 for ATDI was justified and
representative.

The HL smell was detected on one of the 5 god classes, io.reactivex.rxjava3.
core.Flowable, that is part of the GC smell. This class has an overwhelming
number of ingoing and outgoing dependencies, namely 264; in other words, there
are 264 other classes that either depend on, or are depended by Flowable. P4
mentioned that this did not cause any significant technical issue as Flowable does
not contain any logic, but it did raise many concerns among the users of RxJava
as they lamented the presence of too many methods in this class (as well as in the
other 4 god classes). For these reasons, P4 stated, with great confidence, that the
estimated value of 385 for ATDI was correctly representing the effort necessary to
refactor, and added that it made sense for it to be close to a fifth of the amount
estimated for the GC smell as the other four classes shared the same issues and
together constitute GC smell itself.

P4: “[...] this package [the god component] contains, among others, 5 huge
classes, which you could consider 5 god classes. So it makes sense to have such
a big value for the index. There are no real technical issues with it, but users
do complain about having too many methods on these god classes.”

It is worth mentioning that P4 admitted that every time a new feature was
added to the system, these 5 classes were bound to change significantly, as they
had to be adapted to the new functionality, as well as updated with the latest Java
documentation.

Example 2: Occupancy of parking facilities This example features a project pro-
vided by C2 that monitors occupancy in parking facilities. The smells discussed
for this system were two HL, one affecting a class and the other a package.
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The HL at the package level was detected on the service package, the core
package of the system containing all the services12 provided by the system. The
package had a total of 23 ingoing and outgoing dependencies, meaning that it was
connected to the majority of the packages in the system. The estimated ATDI for
this smell was 600. The servicepackage also contained an HL at class level, namely
the UserService class, with 38 ingoing and outgoing dependencies. This HL smell
had an estimated ATDI of 150. P14 confirmed that estimations for both smells
were reasonable as the service package contained the core business functionality
of the system (with classes such as UserService), thus making it both very risky (i.e.
changes may propagate easily) and very hard to change (i.e. the package is complex
because of the business logic). Moreover, P14 mentioned that UserService was
clearly contributing to the service package being an HL as it depended on classes
outside service itself, but there were also several other classes contributing to the
unbalanced number of dependencies that make service itself a HL.

P14: “Considering that every single business logic is in there [the service
package], yes, I believe that it [the index] is proportionally correct. Especially
with respect to the UserService class. The business logic of our services is
the most difficult to change, whereas UserService class is relatively easier to
change”.

Example 3: Document management system This example features a project pro-
vided by C1 affected by several smells. Among the four smells discussed with P11,
the CD is the most interesting to look at due to the counter-intuitive nature of the
smell and the estimated ATDI value.

The CD is depicted in Figure 6.11 (anonymised to respect the intellectual prop-
erty of C1) and it affects 8 classes scattered across 6 different packages. The classes
involved are part of the Model-View-Controller architectural pattern and their
purpose is to retrieve data from the database and display it to the user in a view.
Despite these classes being rather intertwined, our model estimated an ATDI = 65,
a rather low value for eight classes that are so much interconnected. Participant
P11 agreed with the estimations, justifying them as follows:

“The [estimated value] seems pretty good. [...] There are some dependencies
that we cannot remove, and I can’t see any dependencies that shouldn’t be
there. So all the dependencies are desired.”.

12Services are implemented through the Spring Framework.
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Figure 6.11: A cycle among 8 classes detected in one of C1’s system.

Example 4: Jenkins The fourth example features smells detected in the Jenkins
project. Jenkins is a well-known build automation system that has a rather long
and convoluted development history. This resulted in many architectural smells
forming in the system over time, two of which are discussed in this example,
including the smell with the highest value of ATDI we measured in this study.
The two smells that are of interest are a HL and a GC, which both affect the same
package, the hudson.model; this is a huge package that directly contains 43, 000
lines of code distributed across 172 classes with a total of 103 ingoing and outgoing
dependencies towards other packages in the system. The package was described
as rather complex to evolve and change due to its internal logic and the amount of lines
of code. This example is rather interesting to discuss as the two values of ATDI are
different from each other despite the two smells affecting the same package. The
estimated index for the HL smell was 8,500, whereas for the GC it was 1,500.

Nonetheless, P5 agreed with great confidence on both estimations and ac-
knowledged that they were both representative of the effort required to refactor
each smell. P5 provided two reasons on why the refactoring of the HL smell (i.e.
reorganise the dependencies to reduce their number) was so difficult. First, sev-
eral other parts of the system would have to change in order to remove the smell;
and second, complex refactoring techniques would be required to do so, mentioning
inversion of control and the definition of new APIs as examples. Both of these do
not necessarily hold true – at least not to the same extent – for the GC smell: its
refactoring would require less invasive operations such as splitting the package
into multiple sub-packages. P5’s comment on the matter was that refactoring GC
should be easier because its refactoring is more “self-contained”, that is changing
it would impact fewer classes outside the affected package itself.
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P5: “When I think about some of the main things it’s [the model package]
referring to, most of these things have to do with the build queue logic. And
that’s the sort of thing that I remember suggesting extracting into a library
[...] to untangle the mess within. The idea was that anyone who is much
more familiar with the algorithms behind [the job scheduler] and would want
to contribute improvements to, would be very unlikely to be able to do so in
its current state because of it being a God component. So I definitely agree
with the number and agree that it should be a lot lower than the hublike one,
particularly because it’s more self-contained.”

Example 5: Financial assets management The participants did not always agree
with the estimations of ATDI. One such example, is P15, from company C2, who
disagreed with the estimations provided for two CD instances discussed during the
interview, considering them to be overestimated. Both cycles affected 3 elements
(the first was on packages and the second on classes), which allowed the execution
of predicates to filter the trading assets retrieved from a repository according to a
certain business logic. These two cycles, while unrelated (i.e. in different parts of
the system), shared the same logic. The cycles were estimated at ATDI = 90 and
ATDI = 55 for the package and class cycle respectively; whereas the ideal values
for P15 would have been ATDI = 10 and ATDI = 5.

P15 supports his adjusted estimations by mentioning that the elements in the
cycles are not that coupled together and that cycles themselves were introduced
intentionally to support a feature.

P15: “I think that this should be smaller. I’ve started introducing [these
CDs] myself, then everyone else pretty much copy-pasted the design when
they created new entities. [...] I’ve seen the code in these classes, and I know
it’s really simple to make the change. The predicates packages do not depend
on the implementation of the repositories package, so it’s just a few lines of
code that I have to change. I don’t have to make any big architectural change
to remove the dependency there.”

Given that these cycles were introduced intentionally, it is impossible for our
approach to make this distinction. Arguably, these two smells exist within the
system and may cause a problem in the future, and, to some extent, the estimation
is justified. However, we do agree that the estimation should not be that far from
the perceived value.
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Example 6: JUnit 5 As a final example, we present another case where the par-
ticipant disagreed with the estimation provided by our model13. This example
concerns a GC detected in JUnit on the org.junit.jupiter.api package, which
directly contained 54 files, amounting to a total of 9, 800 lines of code14.

The ATDI estimated for this smell was 300. P3 was not convinced that this value
would be representative of the effort necessary to actually split the package, but it
is rather an overestimation.

P3: “I don’t think that splitting that package would be particularly complicated.
It’s mostly annotations and then assertions and assumptions classes. Those
could be relatively easy to split into sensible packages. It’s kind of by design
and it’s the core package, so I’m not in agreement that this is a bad thing in
this case. I would agree in general, but maybe this is an exception.”

Indeed, the motivations provided by P3 are reasonable, and we accept that the
model did overestimate the ATDI in this case. Again, in Section 6.7.2 we discuss
how we use this feedback to improve the model.

6.7.2 Feedback on the overall approach (RQ2.3)

In addition to eliciting the perceptions of participants on the ATDI estimations, we
also collected some general feedback on the approach. We classified this feedback
into three different categories, which are elaborated in the following paragraphs.

Added value Most participants (especially the industrial ones) expressed their
positive feedback on the added value of adopting architectural smell analysis and a
technical debt index. One of the aspects that was most helpful to most participants
was being able to see the smells graphically represented. Several participants
mentioned that the visual representation of the packages and classes affected by
smells can support them in adopting a refactoring strategy to make the components
more independent and reusable.

P13: “Being able to see things visually gives you an insight that we could at
least try to structure packages a little differently.”

Other participants mentioned the usefulness of the smell detection itself and the
estimation of the index specifically when addressing long-standing issues within
the project and for prioritisation purposes.

13Note that 4 examples agreeing with the estimations and 2 disagreeing follows the agreement-
disagreement ratio we have in our data (75%-25%).

14The detection threshold used for JUnit was 7, 800 lines of code.
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P9: “[...] breaking down these big, nasty packages is a long-standing issue of
the project and a barrier to our ongoing maintenance. Having tools that can
automate detection and suggest the index is really nice.”

P2: “It might be useful in the fact that you can get an estimate of the biggest
problem, in this case a god component, and that might be the first to look into.”

Finally, the participants acknowledged the value in combining this analysis
with continuous integration, as it would help them spot emerging trends and
make decisions accordingly on what parts of the system to refactor next.

P5: “this is the sort of thing that you can calculate on each commit or change
and have rules like you can’t increase the technical debt on the project [...]”

Discussion enabler & learning opportunity The participants remarked that, the
fact that smells are visualised and assigned an index representing the effort to
refactor, eases maintainability-related discussion with the other maintainers of the
project. The ensuing discussion is also objective, as it is backed by the data collected
from the current version of the system, rather than by how one specific user, or
maintainer, sees the system.

P5: “[...] seeing the god component there might have been good evidence for
when I was trying to suggest [to the other maintainers] the extraction of the
queuing and scheduling logic into a library.”

In addition to enabling discussion, participants also reported that seeing the
smells detected in the code they wrote provided an opportunity for improving
themselves because they could understand what mistakes they made. This would
then lead, over time, to personal growth and allow them to write code while
also being aware of the architectural implications of their design decisions. It is
noteworthy that some developers were intuitively familiar with the concepts of
architectural smells, but they did not a have formal definition to think about them.

P15: “I think all developers could benefit from something like that. I happen
to be a big fan of clean code but I haven’t really thought of a clean architecture
to be honest.”

Limitations of the approach and possible improvements The interviewees also
allowed us to identify a few limitations and possible improvements to the approach.
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Some of the smells were detected on code that did not change in years, and was
not expected to change in the future either. While these may not be false positives,
as the smells were confirmed by engineers to exist, they should be distinguished
from other smells, elements of which are constantly changed (and thus TD interest
accumulates). Therefore, we could combine ATDI values with TD interest infor-
mation that takes into consideration historical change data, and give lower priority
to those smells whose affected elements did not change much over the previous
years/months.

One challenging issue is that certain design choices that are detected as architec-
tural smells, do not pose any concern to developers (e.g. all API-related classes are
in a single package, like in Example 6). Therefore, they perceive the ATDI for these
instances as an overestimation. One way to improve that would be to provide more
features that allow the model to differentiate between regular classes and abstract
classes, interfaces, or annotations. That would allow the developers to tune the
model so that their design choices are taken into account in the estimated severity
of the smells.

Another limitation is that our approach does not consider the case where cycles
formed among classes are caused by interfaces, which are defined much higher in
the abstraction hierarchy than the normal classes themselves. These cycles are much
harder to fix because they also require fixing the design of the interfaces. Therefore,
the effort required to fix them may be several order of magnitude higher, as it
involves changing several other classes. This aspect results in an underestimation
of the ATDI by our approach. Improving on this aspect would provide much more
accurate estimations for smells with small ATDI values.

Finally, some participants expressed their concern with the applicability of the
refactoring opportunities suggested by our analysis (smells detection and ATDI)
to established libraries and projects sensitive to certain run-time qualities (i.e. re-
liability and availability). Architectural smells require large refactorings in order
to be changed, and some participants mentioned that it would be hard for them to
convince the community to make the necessary changes.

6.8 Discussion

In this section we discuss the results obtained in our study for each research ques-
tion as well as their implications for both researchers and practitioners.
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General implications The main implication stemming from our results is that
practitioners now have a validated approach to measure the ATD principal gener-
ated by architectural smells. This allows them to better track the ATD incurred
over time, identify trends in the amount of debt incurred, and react accordingly. In
particular, this enables them to identify refactoring opportunities and plan them as
necessary. Indeed, AS are well suited for repayment as they are targeted, meaning
that it is clear for practitioners where the debt is and what steps need to be taken
in order to repay it.

Moreover, our approach provides ATD principal estimations for each individ-
ual AS smell instance. This is instrumental during the prioritisation phase, as
practitioners can adopt different prioritisation strategies based on the amount of
debt accrued by each instance. For example, some may decide to refactor the smells
with high ATDI to tackle the biggest problems first, whereas others may decide
to focus on the small smells only and integrate AS refactoring in their process,
resulting in an incremental repayment. Yet another example was suggested by one
of the interview participants: to avoid the introduction of commits that increase
the debt over a certain amount, thus resulting in less ATD density over time.

To facilitate the adoption of our approach by industry practitioners, an imple-
mentation was integrated into Arcan and is publicly available in the replication
package of this study15.

RQ1 implications For researchers, the main implication stemming from RQ1 is
that techniques such as pairwise comparison, ranking systems (e.g. TrueSkill), and
machine-learned ranking (or LTR), that are widely adopted in other disciplines such
as Information Retrieval (IR), can be flexible enough to be applied to practical
problems encountered in Software Engineering (SE).

Indeed, IR complements SE, and more specifically software maintenance, very
well. The core problem faced during software maintenance is the complexity
generated by software, namely the difficulty to understand, browse, and change
software artefacts because of the high density of information contained in them
[Robillard et al., 2010]. IR provides the means to reduce this information overload
and only access the information that is needed the most (i.e. the most relevant)
based on a given query (e.g. what are the most severe smells in the system?)
[Robillard et al., 2010]. Therefore, it comes naturally to think of applying IR tech-
niques to solve SE problems that may be otherwise too complex. One example
of possible application is suggesting the issues (from the issue tracker) that an
open-source contributor can address based on their previous experience in solving

15Visit https://dx.doi.org/10.6084/m9.figshare.19823323 to access it.

https://dx.doi.org/10.6084/m9.figshare.19823323
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issues and urgency of the issue calculated based on the users’ comments on that
issue (e.g. new contributors can address low-urgency, low-impact issues).

Alas, applying IR into SE in practice poses some technical challenges that may
not be easily overcome in all contexts, or worth the extra effort. Take for example
the problem posed by using pairwise comparison to order a set. Theoretically, the
number of pairwise comparisons that are necessary to obtain a perfectly ordered
set grows factorially with the number of elements in the set. This problem, in
fact, arises only to solve another, arguably bigger problem that many IR techniques
face: the need of a data set to train a machine learning model. This makes several
IR techniques a feasible solution to a ML model, only if a data set already exists,
or there is a practical way to create such a data set. In our case, we were able
to create a data set by using pairwise comparison, and subsequently managed to
circumvent the problem that pairwise comparison creates by employing several
different techniques; but these are clearly limited to our application and may not
always be feasible in other contexts.

Nevertheless, we believe that IR applications to SE are promising and that
there are a lot of potential applications of IR to SE [Happel and Maalej, 2008,
Robillard et al., 2010]. Compared to the traditional SE approach of designing an
algorithm to solve a problem, IR shifts the effort from designing the algorithm to
designing the data representing the problem to be solved. The major drawback
is that the lack of means of collecting such data hinders the applicability of such
techniques. However, a data-driven solution is more likely to be effective. In fact,
previous studies from the literature have already proven the potential of Recom-
mendation Systems, for example, to suggest design patterns to apply to a code
base [Palma et al., 2012], or suggest the libraries to use for a software project and
how to use them [Di Rocco et al., 2021]. This work has improved on top of that by
also demonstrating the potential of ranking systems (e.g. TrueSkill) and machine-
learned ranking (LTR). One concrete idea stemming from our results, is to apply
LTR models to create a system that helps developers finding refactorings examples
given an AS, or in other words a search engine for refactoring examples.

RQ2 implications An interesting remark stemming from the results of RQ2.1 and
RQ2.2, is that ATDI does not need to be precise in order to be considered representative of the
effort needed to refactor. This is especially true for large estimations (i.e. ATDI > 500),
because developers seemed to value more the relative value of an estimation (w.r.t.
to other estimations) over its absolute value. Specifically, if in their mind the
difference between the largest estimation and the second largest estimation was big
enough, then both estimations were deemed representative of the effort. However,



6.8. Discussion 183

for smaller instances, some developers (mostly open-source ones) did not fully
agree with the estimated value of at least one of the instances they were shown. This
shows that the smaller estimations need to be more precise in order for them to better
resonate with the gut feeling of the engineers and be considered representative. One
way this could be achieved is by implementing the improvements mentioned in
RQ2.3 (Section 6.7.2). Nonetheless, given that a large percentage of the maintenance
effort is generated by the top few AS [Xiao et al., 2016], we claim that, to a certain
extent, our approach provides meaningful and representative estimations that can
be used to both provide objective evidence to make informed prioritisation decisions
and enable developers to reliably plan the allocation of resources during repayment.

An observation stemming from the results of RQ2.3 is that most projects priori-
tise other quality attributes over Maintainability. As we will better see in Chapter 7,
we found that (industrial) software practitioners prioritise run-time qualities (e.g.
Performance, Availability, Evolvability) over design-time qualities (e.g. Maintain-
ability, Compatibility, etc.). These findings also apply to this study as well, but
they also uncover a rather interesting problem that all TD management approaches
share. For projects such as established libraries (e.g. JUnit, RxJava, etc.) and high-
availability systems (e.g. Cassandra), applying refactorings is almost impossible, as
several factors drastically limit the type of changes that the maintainers can make.
For example, moving a class to another package would change its fully qualified
name, thus breaking all third party systems depending on it (e.g. think of JUnit).
With a limited amount of options to actually perform ATD repayment, properly
managing ATD becomes harder. It is important to note that this is not specific
to our approach, but rather it is a problem faced by all approaches that identify
architectural smells and other issues that require large refactorings in order to be
removed.

This issue is further aggravated by the fact that many libraries were written
before the advent of Java 9 modules and the strong encapsulation they provide.
This means that several classes that were only intended to be used internally are
instead depended upon by the users of the library, which makes them very hard
to change. Moreover, several senior maintainers of the project are reluctant to apply
any sort of refactoring for the fear of introducing a bug that would undermine the
runtime stability of the project. Contributors are forced to pay extra TD interest
while performing typical maintenance tasks but cannot make the large refactorings
required to reduce the amount of interest paid in fear of breaking the backwards
compatibility or a key runtime quality of the system. This is a deadlock situation for
maintainers and a lose-lose situation for the overall project, as any action undertaken
is a risk to the stability of the project. A possible solution is to embrace API-
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disruptive changes (e.g. move a class to another package) and only include them
in major releases of the system. This strategy comes with the risk of fragmenting
the user base and having to maintain two, or more, versions of the same project
simultaneously.

To conclude, the main implication for practitioners arising from RQ2 is that they
can rely on our approach to manage ATD principal, but they might need careful
consideration on how to exactly implement it in certain projects that are sensible to
change. Projects that lack proper encapsulation may consider planning for a major
release that breaks backwards compatibility, whereas projects that prioritise run-
time qualities, may apply small, incremental refactorings that improve the state of
the system without compromising its availability or reliability.

6.9 Threats to validity

This section describes the threats to validity we identified for this study. We
classified them under construct validity, external validity, and reliability, following
the guidelines proposed by Runeson et al. [Runeson et al., 2012]. Internal validity
was not considered as we did not examine causal relations [Runeson et al., 2012].

Construct validity This aspect of validity concerns the extent to which this study
measures what it is claiming to be measuring [Runeson et al., 2012]. In other words,
whether the data collection and data analysis methodologies truly allow us to
answer the research questions we asked. To ensure that, we developed a case
study following a well-known protocol template [Brereton et al., 2008], kept track
of how each finding links to the data (chain of evidence) [Runeson et al., 2012], and
the study design was reviewed by the two authors iteratively as well as by other
researchers within the same research group.

A possible threat to construct validity lies in our selection to use Arcan as
the tool to detect architectural smells. Lefever et al. [Lefever et al., 2021] have
shown that technical debt detection tools report divergent, if not conflicting, re-
sults. This may very well also be the case with Arcan despite not being in-
cluded in Lefever et al.’s study. The discrepancy is caused by the fact that
different tools adopt different detection rules and provide different implemen-
tations of how to detect architectural smells. Therefore, we cannot claim that
the results obtained through Arcan are comparable with results obtained from
other tools. However, it is important to note that this would be the case even if
we used any other tool [Lefever et al., 2021]. We consider this threat partially mit-
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igated as the detection rules and algorithms provided by Arcan are based on
independent, previous work. More specifically, CD is based on the Acyclic De-
pendencies Principle [Martin et al., 2018, Lippert and Roock, 2006], HL and UD
on the definitions provided by Samarthyam et al. [Samarthyam et al., 2016]
and Martin [Martin et al., 2018], and GC on Lippert and Roock’s principles
[Lippert and Roock, 2006]. Arcanwas also validated in a number of different stud-
ies [Martini et al., 2018a, Arcelli Fontana et al., 2020, Arcelli Fontana et al., 2017].

Another threat to construct validity arises from the fact that each participant
was asked to discuss (at most) 4 AS instances, and this may not have been enough
for them to have a complete impression of the performance of the approach. This
choice was imposed by the limited amount of time we had for each interview
(30 minutes), as discussing 4 instances usually required 15 to 20 minutes, and the
introduction 10 to 12 minutes. However, this format gave us the opportunity to
discuss the technical details for each instance and better comprehend the point of
view, and rationale, of the participants. This trade-off between quantity and quality
allowed us to better motivate our findings and strengthen the chain of evidence.
Therefore, we consider this threat as, at least partially, mitigated.

A final threat to construct validity lies in the method used to sample AS to show
to practitioners. An improper sampling strategy could have caused the sample
of smells extracted to mostly focus on smells of a certain type, or on smells of
which estimations lie within a specific range (also known as “cherry-picking”).
This would have inherently biased the results and therefore the outcome of our
study. To avoid such a problem, we adopted stratified random sampling to ensure
we select the same amount of smells for each smell type (e.g. CD, HL, etc.) while
the actual instances sampled for a smell type are picked randomly. However, the
main problem of this strategy is that it does not reflect the actual ratios of smell
types measured in the real world. Nonetheless, we consider this threat as mitigated,
as stratified random sampling ensured that the approach is equally validated for
all smell types considered while also avoiding “cherry-picking” a specific range of
values.

External validity This aspect of validity concerns the extent to which it is possible
to generalise the results of the study. In other words, are the results of relevance
for cases other than the one analysed [Runeson et al., 2012]?

A threat to external validity is the sample of projects used to create the train-
ing and test sets for our machine learning model (step ‘a’ in Figure 6.2). More
specifically, the pool of projects we sampled smells from was limited to the projects
that our annotators were familiar with. This resulted in the projects (see Table 6.2)
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being relatively small (only 2 projects with more than 100,000 lines of code) and
the number of application domains covered being relatively limited (3 static analy-
sers, 2 web frameworks, and 3 testing frameworks), on top of all being open-source
projects. Ultimately, this could impact the capability of the machine learning model
to properly rank AS instances that may be very different than the instances in our
training set, both in terms of size and structure. Nonetheless, we believe that the
validation results obtained by RQ2 show that this threat only poses a limited risk,
as the estimations of the whole approach were not severely impacted despite most
of the systems used to validated the results (Tables 6.3 and 6.4) being very different
than the ones contained in the training set (Table 6.2).

Another threat to external validity is the lack of software architects in our list
of participants. This threat prevents us from claiming that the results of RQ2 can
also represent the opinions of software architects, as they may have a completely
different opinion on the approach we proposed. We can, however, claim the
generalisation of our results to developers and senior developers with several
years of experience.

Finally, the last threat to external validity is the fact that our pool of industrial
participants is rather limited. We only collaborated with two companies, both are
SMEs and both are European. Therefore, it is hard to ensure the full generalisation
of the RQ2 results outside these bounds. However, it is important to notice that
almost all of the open-source participants were full-time developers in companies
from all over the world, and only contributed to the open-source project as part of
their work, or as a hobby. Therefore, we believe that this threat is partially mitigated
and that we can claim the generalisation of our results to full-time open-source
contributors, industrial practitioners that contribute to open-source projects, and
(to some extent) industrial practitioners operating in SMEs.

Reliability Reliability is the aspect of validity focusing on the degree to which
the data collection and analysis depend on the researchers performing them
[Runeson et al., 2012].

While we cannot share the transcription of the interviews for confidentiality
reasons, we do, however, provide a replication package16 containing the design of
this study, the complete list of questions asked to our interview participants, the
data set used to train the machine learning model, and the tool Arcan implement-
ing the ATDI calculation. This should allow researchers to assess the rigour of the
study or replicate the results using a different set of projects.

16Visit https://dx.doi.org/10.6084/m9.figshare.19823323 to access it.

https://dx.doi.org/10.6084/m9.figshare.19823323
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A common threat to reliability when qualitative data is analysed, is the potential
bias introduced by the researcher performing the coding. This threat was mitigated
by having a second researcher inspect both the codes and intermediate results
during each round of coding. All the feedback received was then integrated and
the subsequent coding sessions adopted the updated codes. The analysis was
performed using well-established techniques already used in previous work on
the same topic as well as also in different fields (i.e. CCM and Grounded Theory).
Therefore, we consider this threat mitigated.

Another threat to reliability is posed by potential improper application of ma-
chine learning techniques during the model engineering phase (i.e. data set creation
and model evaluation). To avoid common pitfalls when implementing machine
learning into our approach, the whole process was supervised by a third researcher
specialised in this field. Thus, we consider this threat, at least partially, mitigated.

6.10 Related work

In this section we report on previous research on topics related to this study,
i.e. to the estimation of the principal of architectural technical debt. Specifically,
we review related work on the following two categories: approaches estimating
architectural TD principal (Section 6.10.1), and approaches estimating any other
type of TD principal (Section 6.10.2). Our approach is directly comparable only to
the first category, i.e. to similar work on ATD principal estimation; this comparison
is presented at the end of Section 6.10.1.

6.10.1 Approaches estimating architectural debt principal

Xiao et al. [Xiao et al., 2016] have proposed a formal model to quantify architectural
debt principal using a History Coupling Probability (HCP) matrix. The HCP matrix
is calculated using conditional probability of changing files and is then used to
identify candidates of debt items. Candidates were then modelled using different
regression models (linear, logarithmic, etc.) to find which model fits best the interest
of the debt items in the system. Next, debt items were ranked based on the effort
required to fix them. Xiao et al. evaluated their approach on 7 open-source projects,
showing that a significant proportion (51% to 81%) of the overall maintenance effort
was consumed by paying interest on architectural debt items. Their approach is
implemented into their tool called DV8.

Roveda et al. [Roveda et al., 2018] developed an architectural technical debt
index based on the (dependency-based) architectural smells detected in the system.
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The index is based on the number of smells detected in the system, their severity,
the history of the smell in the system, and a few dependency metrics defined by
Martin [Martin et al., 2018]. The calculation of severity takes into consideration
the PageRank of the architectural smell calculated on the dependency graph of the
system. Next, Roveda et al. proceeded to analyse the Qualitas Corpus data set
[Terra et al., 2013, Tempero et al., 2010b] and compare the results with Sonarqube’s
technical debt index. The comparison showed that there is no correlation in the
historical trends of the two indexes, leading the authors to conclude that the two
indexes are independent.

Wu et al. [Wu et al., 2018] created and validated an architectural debt index
within a big multinational software company. The index is called Standard Archi-
tecture Index (SAI) and is composed of a number of measures reflecting recurring
architecture problems reported by the company’s engineers and architects. More
specifically, measures are based on coupling, cohesion, rate of cyclic dependencies,
instability, modularity violation rate, and many others. The index went through
two major iterations within the company and the authors also compared it to actual
productivity measurements. The improvements measured by SAI correlated with
improvements in productivity for the two products the index was tested on.

Martini et al. [Martini et al., 2018b] proposed a semi-automated approach to
identify and estimate the architectural debt principal of a project owned by a large
telecom company that is written in C++. The approach features a measurement
system based on the ISO/IEC 15939:2007 standard to estimate the urgency for
refactoring for each component in the system based on two key concepts: current
complexity of the system and effort spent maintaining the system. To calculate
these, several metrics and algorithms were taken into consideration by the authors,
such as the number of files, the number of lines of code, the number of changes
in all files, McCabe’s and Halstead’s complexity metrics. For the calculation of
the effort, however, engineers need to be involved, thus making the process semi-
automated. Finally, to evaluate their approach, Martini et al. performed a survey
with 35 engineers and architects working on the system analysed with their model.
The results showed that the engineers agreed that the output of the model was
useful to identify any architectural debt that needs refactoring and that the effort
estimation estimates correctly the business value of doing such a refactoring.

Verdecchia et al. [Verdecchia et al., 2020] proposed a generalised approach to
calculate the technical debt principal index of a system leveraging statistical anal-
ysis. Unlike the aforementioned approaches, Verdecchia et al. aimed at designing
a process that is language-independent, tool-independent, supports tool compos-
ability with multiple levels of granularity of their analysis (e.g. class, package,
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module, etc.). To achieve such a goal, they formalised the problem mathematically
and considered the output of any tool as a set of architectural rules that are applied
to every artefact in the system. Next, they incorporated into the mathematical
model granularity levels and clusters of architectural rules (called architectural
dimensions by the authors). While this approach does have several advantages
(as mentioned above), it also comes with a number of drawbacks; for example it is
dependant on a benchmark of software projects to calculate some of the statistics
used during the calculation of the index.

Table 6.6 summarises the differences between related work on ATD principal
estimation and this work. Our work improves over related work on two main
points. First, we are the first to propose a machine learning-based approach to
tackle this problem rather than relying on manually-set thresholds [Wu et al., 2018,
Martini et al., 2018b] or arbitrary proxies of severity [Roveda et al., 2018]. Second,
we validated our approach by interviewing software developers from both indus-
trial and open-source projects; most other approaches were only evaluated, in the
sense of performing measurements and comparisons, while only two were vali-
dated, in the sense of confirming they actually provide benefits to developers, but
in a limited way. Specifically, evaluation was mostly performed on open-source
systems [Xiao et al., 2016, Roveda et al., 2018, Verdecchia et al., 2020], whereas the
only two studies that performed a validation were in both cases within a single
company17 [Martini et al., 2018b, Wu et al., 2018], thus critically reducing the gen-
eralisation of the results obtained. Additionally, our approach is the only one that
provides a publicly-available tool that implements the approach18.

The use of the smell characteristics of an architectural (or code) smell to predict
its severity is certainly not a new concept in software engineering [Laval et al., 2012,
Tsantalis and Chatzigeorgiou, 2011, Arcelli Fontana et al., 2015a, Vidal et al., 2016,
Roveda et al., 2018]. Some work has focused on the use of metrics by selecting arbi-
trary, hand-picked thresholds, or weights, and combining such metrics into a single
value representing the severity of a smell [Laval et al., 2012, Vidal et al., 2016]. Oth-
ers experimented with using benchmarks of open-source systems to automatically
define thresholds [Arcelli Fontana et al., 2015a] with the hope of reducing the bias
introduced by hand-picked metrics. Alas, both of these strategies are inherently
flawed. In the former case, hand-picked thresholds, even if based on heuristics
and expertise, are severely limited to specific cases dictated by the assumptions
(e.g. how much a design principle influences a smell) used to set them in the first
place. Instead, our ML model deduces these from the training set as part of the

17Note that several of the open-source engineers that we interviewed were also working in industry.
18Visit https://dx.doi.org/10.6084/m9.figshare.19823323 to access it.

https://dx.doi.org/10.6084/m9.figshare.19823323
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training process. In the latter case, benchmark-based approaches assume that the
systems included in the benchmark cover the whole spectrum of good, medium,
and low quality systems and that the metrics computed on them are distributed
equally for ‘good’ and ‘bad’ values of the metric itself (e.g. the Complexity metric
only has values for > .50 in the benchmark, so .50 is considered the lowest value of
Complexity when in reality it might be a medium value).

To conclude, the approach presented in this chapter does not suffer from some
of the well-known shortcomings that other studies do [Khomyakov et al., 2020]. In
particular, we developed a fully-automated approach that does not rely on hand-
picked thresholds, or benchmarks, but instead uses machine learning to overcome
these shortcomings; then, we validated the approach by involving practitioners
from multiple companies and from both open-source and industry. In addition, an
implementation of our approach is also freely available in the replication package
of this chapter19.

6.10.2 Approaches estimating other types of technical debt prin-
cipal

Letouzey et al. [Letouzey and Coq, 2010] designed the well-known SQALE analy-
sis model that hierarchically aggregates from rough low-level measurements into
a high-level index that is meant to represent the status of the whole system. More
specifically, the authors describe how to aggregate the data coming from two differ-
ent types of hierarchies: an artefact hierarchy (e.g. from lines of code to methods,
from methods to classes, etc.) and a quality hierarchy (e.g. Maintainability is bro-
ken down into Readability, Changeability, etc.). Additionally, they also analysed
how different data scales (e.g. nominal, ratio, interval, etc.) should be synthesised
and aggregated. SQALE was later adopted and evolved by several tools, including
SonarQube20 and SQuORE21.

Nugroho et al. [Nugroho et al., 2011], presented a technical debt principal and
interest estimation approach. Their approach uses a straightforward (linear) math-
ematical model to map ISO/IEC 9126 quality attributes to a series of source code
properties. Next, these properties were mapped to a rating system with 5 different
levels (i.e. star-based system) to represent the current quality level of the sys-
tem. The approach thus allows to estimate the current principal by calculating the
amount of effort required to rework the system to get a higher quality rating (e.g.

19Visit https://dx.doi.org/10.6084/m9.figshare.19823323 to access it.
20Visit https://www.sonarqube.org/.
21Visit https://www.squoring.com/.

https://dx.doi.org/10.6084/m9.figshare.19823323
https://www.sonarqube.org/
https://www.squoring.com/
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from 3 stars to 5 stars). Similarly, the interest is calculated by using the maintenance
effort at a given quality level and then subtracting the maintenance effort at the
desired quality level. After describing the approach, Nugroho et al. proceeded
to evaluate it on an 18-year-old system that is written in multiple programming
languages and has over 760,000 lines of code. The case study was designed with the
goal of illustrating that the proposed approach could be applied to answer practical
questions related to software quality improvement over 10 years of development
of the said project. Using the proposed approach, Nugroho et al. showed that 75%
of the system needs to be reworked in order to meet the ideal quality level (5 stars).

Marinescu [Marinescu, 2012] proposed a technical debt index based on de-
sign flaws, which include most of the code smells identified by Fowler and Beck
[Fowler and Beck, 2002]. Marinescu assigned to each design flaw (1) a degree to
which it influences coupling, cohesion, complexity, and encapsulation; a (2) gran-
ularity (e.g. class, method, etc.), and (3) a metric that influences their severity (e.g.
length of duplicated code for the duplicated code design flaw). The overall score
is then computed by aggregating the impact score of each design flaw detected
in the system and normalising by total lines of code in the system. The approach
was evaluated on two well-known Java systems, allowing to derive insights on
their evolution and on the parts affected by design flaws. In particular, Marinescu
established that several types of flows degraded over time, thus demonstrating the
practicality of the approach in real-world scenarios.

In their 2012 paper, Curtis et al. [Curtis et al., 2012] report the approach adopted
by CAST’s Application Intelligence Platform to estimate technical debt principal.
The approach hierarchically divides Maintainability in multiple quality attributes
according to ISO/IEC 9126 and ISO/IEC 25010. At the bottom of the hierarchy, there
are up to 506 quality rules, and each rule may be evaluated for more than one quality
attribute. The cost to fix all the violations (i.e. the principal) is then calculated by
assigning to each rule a high, medium, or low severity, and then multiplying
it by the average number of hours needed to fix each type (e.g. low severity
requires fewer hours). Curtis et al. also described their experience analysing 700
applications and measuring technical debt three times, each time at a different point
in the application’s history. The results suggest that the analysis and measurement
of technical debt principal using the proposed approach can be used in conjunction
with structural quality priorities to guide management decisions regarding future
resource allocation.

Mayr et al. [Mayr et al., 2014] proposed a classification scheme that enables
systematic categorisation of technical debt-estimating approaches. Moreover, they
also propose their own approach based on a benchmarking-oriented calculation of
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the technical debt principal. Similarly to other approaches, the approach of Mayr
et al. uses a set of rules and abstraction dimensions. Contrary to other approaches,
however, they also rely on a benchmark of systems to create a baseline quality level.
The baseline is simply the distribution of different rules in the benchmark systems.
The remediation cost (i.e. the principal) is then calculated as a linear function of the
number of violations to be fixed, the effort required for each violation, and the cost
rate. This approach was evaluated on two open-source projects; the results show
that the approach was able to provide stakeholders with the expected remediation
costs depending on the actual quality of the project and target level.

While all the aforementioned approaches estimate TD principal, they mostly
focus on code debt, therefore, they are not directly comparable to our work.

6.11 Conclusion

The goal of this work was to estimate the architectural debt principal using archi-
tectural smells as a input. For this purpose, we designed an approach that relies
on machine learning and static analysis of the source of the smell to estimate the
effort necessary to refactor a smell. Next, we created a data set to rank architectural
smells by their severity using well-known techniques typically used in information
retrieval (e.g. TrueSkill). Then, we trained a type of ML model typically used in
information retrieval (called learning-to-rank) and obtained excellent results, thus
demonstrating that it is possible to apply these techniques in software engineer-
ing. Finally, we validated the output of the whole approach (not only of the ML
model), through a case study where we interviewed 16 engineers from both open-
source and industry. The results showed that most of the estimations (≥ 70%)
provided by our approach are representative of the effort necessary to refactor a
smell. The results also suggested that for large estimations our approach was very
precise; however, for some cases, smaller estimations were not as precise. We also
identified several points of improvement for our approach, such as taking into con-
sideration the class hierarchy, as it could have a big influence on the estimations
provided by the approach (especially the smaller ones).

Overall, the results confirm that the estimations provided by our approach
are, for the most part, in line with the effort estimations expected by industry
practitioners. This means that our approach is a viable option that could allow
practitioners to track ATD principal of a system, plan remediation strategies, and
prioritise individual AS instances.

In the next chapter, we wanted to better understand the rationale behind a
particular feedback we received from the practitioners in this study; namely, that
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technical debt repayment may not always be possible for them, as they do not
want to risk impacting critical quality attributes (e.g. availability). Therefore, the
following chapter is a case study on how practitioners perform trade-offs among
quality attributes.
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Chapter 7

Quality attribute trade-offs in the embedded
systems industry – An exploratory case study

Reuse is one of the most abused abstractions, because the general
view in organizations is that reuse represents a laudable goal that
teams should strive for. However, failing to evaluate all the trade-offs
associated with reuse can lead to serious problems within
architecture.

— Neal Ford, Software Architecture: The Hard Parts

Abstract

Context: The embedded systems domain has grown exponentially over the
past years. The industry is forced by the market to rapidly improve and release
new products to beat the competition. Frenetic development rhythms thus
shape this domain and give rise to several new challenges for software design
and development. One of them is dealing with trade-offs between run-time
and design-time quality attributes.
Objective: To study practices, processes and tools concerning the management
of run-time and design-time quality attributes as well as the trade-offs among
them from the perspective of embedded systems software engineers.
Method: An exploratory case study with two qualitative data collection steps,
namely interviews and a focus group, involving six different companies from
the embedded systems domain with a total of twenty participants.
Results: The interviewed subjects showed a preference for run-time over
design-time qualities. Trade-offs between design-time and run-time qualities
are very common, but they are often implicit, due to the lack of adequate mon-
itoring tools and practices. Practitioners prefer to deal with trade-offs in the
most lightweight way possible, by applying ad-hoc practices, thus avoiding
any overhead incurred.
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Conclusions: Although it is notoriously difficult to deal with trade-offs, con-
stantly monitoring the quality attributes of interest with automated tools is key
in making explicit and prudent trade-offs and mitigating the risk of incurring
technical debt.

7.1 Introduction

Over the past years, embedded systems (ES) have experienced an exponential
growth, both in terms of size and complexity as well as the number of domains
where they are applied. However, this growth also brings substantial challenges,
one of which is to deal with both the run-time quality attributes that determine
system behaviour, and the design-time ones that establish system sustainability.
Managing quality attributes and performing trade-offs between them is notoriously
difficult in any field [Bass et al., 2012]. In the case of embedded systems, it is even
more challenging, due to the limited hardware resources on which the software is
deployed, as well as the rapid evolution of hardware [Mallick and Schroeder, 2009].

The management of trade-offs between run-time qualities on the one side, and
design-time qualities on the other, is thus becoming a critical research area. Specifi-
cally, the embedded systems industry needs dedicated tooling, processes and practices
for managing such trade-offs [Ampatzoglou et al., 2016]. At the moment, several
tools are available, both free/open-source and commercial, but only to support the
management of individual quality attributes of interest in embedded systems. The
management of trade-offs is still an unexplored area: not only there are no tools
available, but, to the best of our knowledge, there is also no evidence regarding the
specific needs of the embedded systems industry on performing quality attributes
trade-offs. Thus, this problem can be formulated as a high-level research question:
How are trade-offs between quality attributes currently managed by the ES industry and
how can this be improved?

We begin to address this problem through an exploratory case study investi-
gating how embedded systems engineers manage trade-offs between run-time and
design-time quality attributes and what kind of support they require. We collected
data in three steps. First, we performed a series of interviews with eight subjects to
obtain a fine-grained understanding of the daily activities they performed and the
trade-off decisions they experienced on their projects. Then, we planned a focus
group session with eight subjects (two of them had also taken part in the inter-
views), discussing the issues, costs, decisions, and related trade-offs of design-time
and run-time qualities. The interviewees and the focus group participants worked
in five different companies in the embedded systems domain. And finally, we
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interviewed six more participants in order to check, confirm, and possibly extend
the findings from the previous two phases.

Our findings shed light on which qualities are prioritised in the studied do-
main, what kind of trade-offs occur, how these trade-offs take place in practice,
and how they should ideally take place. We note that, while our scope encom-
passes run-time and design-time qualities in general, we pay special attention to
Maintainability, Dependability, and Energy Efficiency. We selected these qualities
due to their importance for the embedded systems software development lifecycle
[Knight, 2002, Koopman, 2004] (further motivation for these 3 qualities is given in
Section 7.3.1).

This chapter is organised using the Linear-Analytic Structure version of the
case study reporting template proposed by Runeson et al. [Runeson et al., 2012].
This template was chosen because it is commonly used to report case studies in
Software Engineering. Section 7.2 introduces some theoretical background and
reports on similar work from literature. Section 7.3 elaborates on the case study
design, while Section 7.4 reports the results obtained by this work. Section 7.5
presents a discussion on our findings with key take-away messages. Section 7.6
describes some threats to the validity of this study and how they were mitigated.
Section 7.7 concludes the work presented in this chapter.

7.2 Background and Related work

This section summarises the background knowledge necessary to better understand
the work presented, and reports on related work.

7.2.1 Background and terminology

The management of the quality attributes of a system is a key activity on which
the success of the project and user acceptance heavily depend on. Indeed, software
quality is defined as the degree to which software possesses a desired combination
of quality attributes [Barbacci et al., 1995, IEEE, 1993].

Quality attributes may be categorised according to different criteria; one pos-
sible taxonomy is to divide them according to their run-time or design-time nature
[Bass et al., 2012]. The former type includes the quality attributes that describe the
behaviour of a system during its execution; in other words, those attributes that
impact the usage of the system by external actors, which may be both users or
other systems (e.g. Performance, Reliability, Security). In contrast, design-time
quality attributes determine the ease of managing the system artefacts during the
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software development lifecycle and the sustainability of the system over time (e.g.
Maintainability, Reusability, Testability). We adopted such a dichotomy in order
to focus our efforts on the trade-offs between the quality attributes across the two
categories rather than within them.

As mentioned in Section 1, we pay special attention to Maintainability as
a design-time quality and Dependability and Energy-efficiency as run-time qual-
ities. Maintainability is strongly connected to the concept of technical debt
[Kruchten et al., 2012], which plagues all non-trivial embedded systems. Tech-
nical debt entails a trade-off (often an implicit one) between the maintainability
of a system and short-term benefits [Kruchten et al., 2012]. Dependability is com-
posed of four sub-qualities, namely Availability, Reliability, Safety, and Security
[JC Laprie, 1992]. Energy efficiency has become a very prominent run-time quality
in the era of the Internet of Things and Cyber-Physical Systems as it affects the
battery life of embedded devices [Sherman, 2008].

In this chapter, we adopt the definitions of Maintainability, Performance, In-
teroperability, and Security from ISO/IEC 25010:2011 [ISO, 2011]. For Reliability
we adopt the definition of Fault-tolerance from the standard. Availability is also
defined as in the standard, however, we treat it separately from Reliability, while
the standard considers it part of Reliability. For Safety, we adopt the definition
provided by IEC 61508-1:2010 [IEC, 2010].

A trade-off between two quality attributes is a conscious, or unconscious, de-
cision that positively affects one quality attribute and negatively affects the other.
Trade-offs are an indispensable element of software engineering, as every decision
has both benefits and liabilities. But not every decision may imply a trade-off

between quality attributes, and it may not always be the case that the quality at-
tributes involved in a trade-off are explicitly known. Some decisions may conceal
implicit trade-offs which the decision-maker may not be aware of, either at the time
of taking the decision or later. There are several approaches that help to deal with
trade-offs; one of the most prominent is ATAM (Architecture Trade-off Analysis
Method), which specifically focuses on evaluating the trade-offs while designing,
or maintaining, a software architecture [Bass et al., 2012, Clements et al., 2003].

7.2.2 Related work

A number of studies provide evidence regarding the trade-offs between run-time
and design-time quality attributes in the embedded systems domain.

Ampatzoglou et al. [Ampatzoglou et al., 2016] performed an extensive case
study on the perception of technical debt in the embedded systems industry,
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shedding light on how Maintainability is traded-off against other qualities. A
number of engineers from seven companies were interviewed, using a supervised
questionnaire-based approach, to elicit information about a total of twenty software
components that had accumulated technical debt and were difficult to maintain.
Their findings show that: (a) Maintainability is more seriously considered when the
expected lifetime of the project is over ten years; (b) the most frequent types of tech-
nical debt are test, architectural and code; and (c) the embedded systems industry
prioritises Reliability, Functionality and Performance against Maintainability.

In a similar context, Wahler et al. [Wahler et al., 2017] investigated trade-offs
between quality attributes in industrial control and automation systems (ICASs)
running on embedded devices. The authors performed an online survey taken by
thirty-seven participants who had worked on real-time embedded systems. The
findings suggest that there are three clusters of qualities that contain positively-
related quality attributes. The first cluster is composed of two run-time qualities
– Timeliness and Predictability – which means that fulfilling Timeliness eases ful-
filling Predictability. The second cluster is composed of three design-time qualities
– Modularity, Reusability, and Portability – and again fulfilling one eases fulfilling
the others. The third cluster is composed of a single run-time quality: Efficiency,
intended as power consumption and heat dissipation. The authors state that qual-
ity attributes belonging to one of the clusters negatively influence the attributes of
the others clusters.

Feitosa et al. [Feitosa et al., 2015] investigated quality attribute trade-offs among
critical and non-critical qualities by analysing twenty open-source Java projects in
the embedded software field. The following findings emerged from their anal-
yses: (a) Correctness negatively affects Performance since solving bugs usually
introduces inefficiencies in the source code that affect performance, and (b) in-
creasing Performance negatively affects Reusability since solutions that improve
performance have a negative impact on quality metrics like cohesion, coupling and
size.

Similarly, Papadopoulos et al. [Papadopoulos et al., 2018] studied the inter-
relation between design and runtime quality metrics by examining source code
quality and comparing it with the performance and energy consumption of a set
of embedded applications. In their work, they measure source code quality us-
ing the Cognitive Complexity metric calculated by SonarQube1 and CPU cycles,
cache misses, and memory accesses to measure run-time performances. The au-
thors observed that, by applying certain transformations to the source code of the
selected embedded systems, there exist trade-offs between performance/energy

1See https://sonarqube.org/.

https://sonarqube.org/
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consumption and Cognitive Complexity.
A different approach was used by Oliveira et al. [Oliveira et al., 2008], who

measured design-time quality metrics on the source code and compared them
with performance-related metrics (i.e. memory, time, etc.) measured during the
execution of the system. The authors compared four alternative designs of an
example system, showing the existence of trade-offs between design-time quality
metrics and performance. More precisely, the increase of the McCabe Cyclomatic
Complexity metric correlated with a decrease in cycles performed and memory
used.

A practical approach to managing trade-offs between run-time and design-time
qualities was introduced by Corrêa et al. [Corrêa et al., 2010]. The authors propose
an approach for guiding design decisions based on the prediction of physical prop-
erties (cycles, power consumption) using traditional software metrics, showing
how design decisions impact on the physical properties of the final system.

The work of Mentis et al. [Mentis et al., 2009] focuses on evaluating the impact
of design decisions on run-time quality aspects for different software architectures
(not limited to embedded systems). Their analysis discovered groups of run-time
metrics that strongly correlate among each other, for they were found to be affected
by the same architectural factors. However, their approach is based on simulation
data obtained using a tool developed by the authors themselves for a previous
study.

Bellomo et al. [Bellomo et al., 2015] studied the most common quality attributes
that projects must address and their relative importance. Their aim was to under-
stand the impact of long-term architectural deterioration (i.e. technical debt) of
quality attributes based on quality attribute scenario data generated through the
Architecture Trade-Off Analysis Method (ATAM) from multiple projects and mul-
tiple domains (including ES) and companies. Their results show how Modifiability
(i.e. Maintainability) is of primary importance in the majority of the projects con-
sidered by the study.

Martini et al. [Martini and Bosch, 2015] explore, by interviewing fifteen embed-
ded systems practitioners, the input they use to deal with architectural technical
debt items caused by non-optimal architectural decisions as well as the priority
they attribute to different aspects of software development. Their findings suggest
that Maintainability-related costs are important when prioritising technical debt
but they are secondary to other business-oriented factors, such as the competitive
advantage.

The presented studies differ from this work in at least one of the following
aspects: (a) they base their analyses and conclusions on open-source projects rather



7.3. Case study design 201

than on industrial ones; (b) they focus on source code analysis rather than on the
human factors that caused a particular change in the system; (c) they do not report
on individual trade-off experiences shared by developers. We chose these criteria
to compare our study to the related work as they comprise the goal of the study
and highlight its uniqueness. Our study is the only one that fulfils all three of these
criteria as summarised by Table 7.1.

Table 7.1: Comparison between related work studies and this study. TO stands for
trade-off.

R.W.
Industrial

setting
Human

factors of TO
Report TO
experience

[Ampatzoglou et al., 2016,
Wahler et al., 2017]

3 3 7

[Bellomo et al., 2015,
Martini and Bosch, 2015]

3 7 7

[Feitosa et al., 2015,
Papadopoulos et al., 2018,
Corrêa et al., 2010, Mentis et al., 2009]

7 7 7

This study 3 3 3

7.3 Case study design

We followed the guidelines proposed by Runeson et al. [Runeson et al., 2012] to
conduct and report case studies. Furthermore, we used the protocol template
proposed by Brereton et al. [Brereton et al., 2008] to develop the case study design
and keep track of its changes. The replication package of this study is available
online2 and includes the case study protocol, the questionnaires of the interviews,
the discussion agenda of the focus group, the transcription template, the notes used
to explain the technical concept to practitioners, and the consent letter template.
To ensure the quality of the results of this study, we list the threats to validity in
Section 7.6 and the mitigating actions undertaken to address them. Moreover, a
sanity check of all results was performed by discussing them in a dedicated meeting
of our research group.

2Visit http://www.cs.rug.nl/search/uploads/People/repl-package-ds18.zip.

http://www.cs.rug.nl/search/uploads/People/repl-package-ds18.zip
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7.3.1 Objective and Research Questions

The objective of this study is made more specific using the Goal-Question-Metric
[van Solingen et al., 2002] formulation:

Analyse the experience of software engineers for the purpose of under-
standing the management of run-time qualities, design-time qualities and the
trade-offs among them with respect to practices, processes and tool support
from the point of view of software engineers in the context of industrial
embedded system projects.

The stated goal leads to four specific research questions:

RQ1 What is the interest of the ES industry in design-time and run-time quality at-
tributes, such as Maintainability, Dependability and Energy efficiency, and what
tools, processes, and practices are adopted to manage them?

This investigates the qualities of interest (in the scope of this study) for practitioners
in the ES domain, as well as tools, processes, and practices used to address these
qualities individually. We distinguish between design-time and run-time qualities.
Once we understand which qualities are of interest, the next question explores their
trade-offs.

RQ2 What trade-offs between design-time and run-time qualities do ES practitioners
make?

This aims at eliciting knowledge on the compromises and trade-offs between
design-time and run-time qualities, as well investigating the implicit or explicit
nature of such trade-offs. Once we understand which trade-offs are made, the next
question explores how they are made.

RQ3 What processes, practices, and tools do ES practitioners use to support trade-off

decisions?

This focuses on understanding whether the developers follow processes and prac-
tices (formal, ad-hoc or otherwise) for dealing with trade-offs and how these are
eventually applied. It is also of interest to check if dedicated or general-purpose
tools are used to support the trade-off decision making process. Once we un-
derstand how trade-offs are currently made, the next question explores how they
should ideally be made.

RQ4 What would be the ideal features of a tool supporting quality attribute trade-off

decisions?
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Finally, this research question aims at obtaining insight on the desired features for
an ideal tool that supports quality attribute trade-off decisions. We have chosen
to investigate ideal tool support instead of practices or processes because (a) tools
are less explored by the current literature [Barney et al., 2012], and (b) practitioners
urgently need tools to manage trade-offs effectively [Ampatzoglou et al., 2016].

As aforementioned in Section 7.1, qualities of particular interest during this
study are: (a) Maintainability, due to the impact of software maintenance on the
overall project costs [Erlikh, 2000]; (b) Dependability, due to its high significance in
most embedded systems, especially safety-critical ones [Knight, 2002]; and (c) En-
ergy Efficiency, due to its rising popularity in multiple sub-domains of embedded
systems [Koopman, 2004]. All of these qualities have a concrete impact on the
success of a product in today’s embedded systems market as they provide a tech-
nological competitive advantage for they affect both costs and end user experience.
While we pay special attention to these three qualities, the study looks at design-
time and run-time qualities in general.

7.3.2 Cases, subjects and units of analysis

The case study was designed as an exploratory embedded multiple-case study
[Runeson et al., 2012]. A multiple-case study allows studying multiple cases (each
within its own context) with a single protocol. As shown in Figure 7.1, the compa-
nies map to the individual cases (or case subjects) while their domain maps to the
context. Accordingly, the engineers that took part in the study correspond to the
individual unit of analysis; thus each engineer represents a single unit.

Table 7.2 lists the case study subjects along with the application domain of the
respective company and the number of engineers involved in the study.

Due to the adoption of two data collection methods, interviews and focus group
(described in the next section), the selection process of the engineers taking part in
the study was threefold.

1. In the first step, each case subject was asked to designate two or three software
engineers to take part in the interviews.

2. Next, the case subjects were asked to provide, if possible, at least one or two
additional engineers to take part in the focus group.

3. In the third and final step, a second round of interviews was performed
interviewing a different set of engineers.
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Context 1

Case 1

Embedded Unit of
Analysis 1.1

Embedded Unit of
Analysis 1.2

Context 2

Case 2

Embedded Unit of
Analysis 2.1

Embedded Unit of
Analysis 2.2

Domain

Company 2

Engineer 1

Engineer 2

Figure 7.1: Embedded multiple-case study design; based on Figure 3.1 by Runeson
et al. [Runeson et al., 2012].

Table 7.2: The case study subjects. Size classification follows European Union’s
SME classification based on the number of employees: Small (< 50), Medium
(< 250), Large (≥ 250).

Case subject Domain Size # of Engineers

C1 Defense and civil aviation Large 6
C2 Industrial wearables Small 4
C3 High Performance Computing Medium 3
C4 Medical implants & HPC Small 4
C5 Automotive Large 1
C6 IoT & Sustainable Energy Medium 2

Total 20

This process of data collection ensured data source triangulation (i.e. collecting
the same data at different occasions) and methodological triangulation (i.e. combining
different types of data collection methods) [Runeson et al., 2012].

Overall, twenty engineers with experience ranging from one to thirty years,
working in six different companies, took part in the study.

7.3.3 Data collection

The research questions were explored by collecting qualitative data through a series
of individual interviews and a focus group. The following subsections describe both
data collection methods in more detail.
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Interviews

Interviews were designed following a semi-structured format, composed of a set
of predefined open questions, with the possibility for the interviewer to further
investigate interesting answers, and for the interviewee, to freely elaborate on
them. The questionnaire can be found in the replication package3.

Before the interviews began, practitioners were asked to think of a brownfield
project on which they had worked on for at least one year and which had at least
two of the following quality attributes among their key drivers: (a) Maintain-
ability (i.e. technical debt), (b) Dependability (Availability, Reliability, Security
and Safety) and (c) Energy Efficiency. Such a request was necessary in order to
guarantee that the subjects were referring to a project that had had enough time to
accumulate technical debt and was concerned with the quality attributes of interest
to this study. More specifically, brownfield projects have an inherent amount of
accumulated technical debt, whereas greenfield projects do not have big mainte-
nance issues. Additionally, working on a project for at least one year increases the
knowledge of the system, allowing the practitioner to obtain a deep understanding
and experience.

Interviews were performed in two rounds spanning one year one from the
other but following the same protocol and questionnaire (strengthening data source
triangulation [Runeson et al., 2012]). In the first round, eight interviews were per-
formed, whereas in the second, six. Background details on the fourteen interviewed
practitioners and the related projects is reported in Table 7.3. The participants were
interviewed through video-conferencing for approximately one hour each. Prior
to performing the actual interviews, two pilot interviews were performed to cal-
ibrate the case study protocol and particularly to refine the questions. The first
pilot suggested that there was a lack of clarity in some of the questions, and that
an initial written list of the topics covered by the interview was necessary to allow
the practitioners to prepare themselves upfront. The change required updating the
protocol, which prevented us using data from the first pilot in the analysis phase.
Concerning the second pilot, the interview allowed us to improve the time required
to ask the interviewee all the questions and it did not result in any change to the
protocol. Although minor changes to the questions were made, none of them was
enough to impact the validity of the interview. Hence, the data from the second
pilot interview was considered valid and was used in the analysis.

Each interview spanned five phases: the first and the last correspond to the
introduction and the conclusion phases respectively, while the other phases were

3Visit http://www.cs.rug.nl/search/uploads/People/repl-package-ds18.zip.

http://www.cs.rug.nl/search/uploads/People/repl-package-ds18.zip
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Goal:  
introduce the
interviewee to the
objective of the
study

Introduction

Goal:  
collect contextual
info about the
interviewee 

Context setup

Goal:  
ask the main
questions of the
interview

Main phase

Goal:  
collect
interviewee's
general opinions

General
considerations

Goal:  
inform the
interviewee about
the next steps

End of the
interview

Figure 7.2: The format of the interviews.

dedicated to data collection, as can be seen in Figure 7.2. After transcribing the
recordings, each transcription was reviewed by the interviewee in order to avoid
misunderstandings.

Concerning the projects discussed with the fourteen interviewees, two of them
talked about the same project, thus thirteen projects were analysed in this study.
Finally, all interviewees gave their explicit permission for their interview to be
recorded.

Focus group

The focus group session was performed for the purpose of triangulating
the results with the data from the interviews (methodological triangulation
[Runeson et al., 2012]). Additionally, the focus group enriched the findings from
the interviews and explored, from a group viewpoint, the practices adopted by the
subjects in real-world embedded system projects. The focus group guide can be
found in the replication package4.

It is important to note that, in a group setting, subjects express more ex-
plicit and detailed views about their needs due to cognitive mechanisms that
activate only through active discussion with other subjects similar to them
[Mcdonagh et al., 2000, Kontio et al., 2008]. Moreover, during a focus group, prac-
titioners can also compare their experience with the other participants and provide
unbiased feedback (to the other group members) from an extraneous point of view.
Hence, by pairing the focus group with a number of individual interviews, we
collected both personal experiences and group opinions.

In total, eight participants were involved in the focus group; two of them had
also taken part in the interviews. The session was guided by the two co-authors,
fulfilling the assistant and moderator roles respectively, as suggested by Kon-
tio [Kontio et al., 2008] and McDonagh-Philip [Mcdonagh et al., 2000]. The format

4Visit http://www.cs.rug.nl/search/uploads/People/repl-package-ds18.zip.

http://www.cs.rug.nl/search/uploads/People/repl-package-ds18.zip
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Table 7.3: Background information on the interviewee and their respective projects.

ID Comp. Project Platform
Role in

the comp.
Years of exp.

curr. role in total

I1 C1
Onboard airborne

surveillance system
C++,

WinXP
Software
Engineer

2 17

I2 C1
Onboard airborne

surveillance system
C++,

WinXP
Software
Engineer

10 16

I3 C1
Black box software

for UAV drones
C++

Software
Architect

8 13

I4 C1 UAV patrol drone C++
Software
Architect

2 2

I5 C2
Meteorological

station with
distributed sensors

Java
Software
Architect

5 11

I6 C2
Smart Glasses for

industrial technical
assistance

Java
Software
Engineer

3 7

I7 C3
Quantum

Chromodynamics
computations

Java +

VHDL
Application
developer

3 3

I8 C3
Scientific

calculations on
FPGAs

Java +

VHDL
Application
developer

1 2

I9 C4
Framework for

brain simulations
on FPGA

Java +

VHDL
Application
developer

6 6

I10 C4
Security-by-design

for IMD
C + VHDL

Application
developer

2 7

I11 C4
Object tracking
application on

FPGA
C + VHDL

Application
developer

2 2

I12 C2
Smart Glasses for

industrial technical
assistance

Java
Software
Engineer

7 10

I14 C6
Distributed mobile
sensing platform

C++
Software
Engineer

1 1

I15 C6
Network of power

meters for solar
panels

Python,
Raspberry

Pi

Software
Architect

6 6

Average 4.1 7.3
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adopted for this data collection step was semi-structured and divided into phases,
as depicted in Figure 7.3. After introducing the participants to the focus group
dynamics, background information about the participants was collected and is re-
ported in Table 7.4. Contrary to what we did during the interviews, we did not ask
practitioners to focus on a single project, but rather we deliberately let them talk
about their whole experience in the industry. This choice simplified the session,
as it would have been impractical and too time-consuming to ask each participant
to select a project and share a minimum amount of context with the other partici-
pants in order for the discussion to make sense. Next, the conversation continued
with the main discussion points, prepared prior to the beginning of the session,
that touched upon the same topics, and in the same order, as the ones from the
interviews. The session ended after 1 hour and 45 minutes and was recorded and
transcribed with the consent of the participants.

Prior to the beginning of the focus group, the participants had also received
a brief written introduction with some examples explaining the technical termi-
nology adopted throughout the discussion. This succinct explanation prepared
them for the beginning of the session, whereas the introduction phase covered any
other gaps in their theoretical knowledge. The discussion points were designed
in a semi-structured way and focused on trade-off decision making and related
support, since the data collected on these topics during the interviews needed to
be further strengthened by the focus group. Specifically, they first covered the
three main quality attributes of this study (i.e. Maintainability, Dependability, En-
ergy Efficiency) in order to initiate the technical discussion. Then, the discussion
moved to implicit and explicit trade-off experiences and related opinions. In the
end, ideas on an envisioned tool supporting trade-offs management were proposed
and discussed by the participants. The contribution of each participant in the dis-
cussion was overall balanced. Nonetheless, two of the participants made fewer
interventions than the average did, whereas another one intervened in most of the
discussions and required the intervention of the moderator. Moreover, two factors,
namely the semi-structured format of the focus group and the presence of two
moderators, ensured that the discussion had a specific direction at any point and
that the two participants (out of eight) that were also interviewed did not unveil
details that would bias discussion and the other participants.

7.3.4 Data analysis

The analysis of the interviews was performed using the Constant Com-
parative Method (CCM) [Boeije, 2002] (which is part of Grounded Theory
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End of the focus
group

Figure 7.3: The format of the focus group.

Table 7.4: Background information of the focus group participants, including the
typical project size these practitioners work on. * denotes subjects that were also
interviewed.

ID Company
Typical project size Role in

the company
Years of exp.

in SLOC in PM curr. role in total

P1 C1 1,000,000+ 15-100
Key Account

Manager
13 31

P2 C1 50,000+ 4
System

Architect
15 22

P3* C2 10,000+ 3
Software
Architect

5 11

P4* C2 10,000+ 3
Software
Engineer

3 7

P5 C2 10,000+ 3 CEO 5 17

P6 C3 N/A 6
Project and

Research
Manager

3 5

P7 C4 15,000 80 Chief Engineer 10 15

P8 C5 500,000+ 7
Project

Manager
2 12

Average 7 15
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[Glaser et al., 1968]), with the support of a dedicated software tool for qualita-
tive data analysis, Atlas.ti5. Grounded Theory (GT) was used because it is one of
the most important methods in the field of qualitative data analysis and it has been
used extensively within both social sciences and software engineering. Addition-
ally, GT provides a structured approach to analyse and process the data collected
from multiple sources, causing the theoretical sensitivity of the researcher to grow
as the data analysis progresses and eventually allow him to formulate hypotheses
and theory.

During data analysis, the CCM allowed us to better understand the data and
identify links between separate data points by comparing the differences and sim-
ilarities (using Atlas.ti’s features in addition to simple tables and diagrams) within
a single interview, between interviews of the same case, interviews from different
cases, and between interviews and statements from the focus group. The analysis
started by coding the available data using special keywords, like “trade-off” and
“quality attribute”, as codes. The coded quotations (i.e. the excerpts associated
with a code) were also linked, whenever necessary, using links of different types
(continued by, criticises, justifies, etc.), provided by default by Atlas.ti. Following the
guidelines of Runeson et al. [Runeson et al., 2012] for analysing qualitative data,
during the analysis, we continuously added new codes when necessary, updated
the existing ones and organised the final forty-nine codes by group. Additionally,
we also created a labelled network, available in the replication package, highlight-
ing the relations between the codes. Next, thanks to such an organisation of the
codes and quotations, we were able to query the data, summarise the information,
and fill it into tables used to compare related concepts and experiences among
the participants or among the different interview phases. Interesting findings and
conclusions were eventually inferred and annotated separately. The process was
iterative and was repeated several times until no new findings emerged from the
analysis.

For the purpose of better understanding the analysis process, let us suppose we
wanted to know what practitioners think of Maintainability. To do so, we queried,
through Atlas.ti, all the coded statements related to the group of codes ”Main-
tainability”. Next we started reading all the statements, compared the opinions
in order to understand the differences or similarities, and then summarised with
own words their opinion in dedicated tables. The tables had as rows the quality
attributes of interest and as columns the interviewee ID, plus a general column
describing the general opinion. These entries were updated and revised with each
iteration of the analysis process.

5See https://atlasti.com.

https://atlasti.com
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Special attention was drawn to create a chain of evidence between the final
results, the intermediary data structures, and the interview transcripts. Chains of
evidence allow tracing back the origin of a particular piece of information to its
original source in case a review of the results might be necessary for the future.

The same methodology – CCM – was adopted for analysing the data from
the focus group. The recordings allowed us to easily discern the exact participant
contributing to the discussion, whereas the same tables and diagrams were adopted
to compare and contextualise the different statements of each participant.

7.4 Results

The following sub-sections report on the findings of this study, organised per
research question.

Before presenting the results, it is noteworthy to mention that the data collected
amounts to fourteen hours of recordings (almost thirteen hours of interviews,
counting an average of 50 minutes on average per interview, and one hour and
forty-five minutes of focus group).

The results from RQ1 are mostly based on the interviews and partially triangu-
lated by the focus group.

The results from RQ2 are more mixed and contain one example (number 4)
exclusively mentioned in the focus group, one example (number 3) coming from
the interviews but mentioned by multiple focus group participants, and the rest
come from the interviews exclusively.

Concerning instead RQ3, it is hard to determine a precise contribution as both
interviewees and focus group participants were sharing similar opinions and ex-
periences.

Finally, the features mentioned by practitioners in RQ4 are equally split between
focus group and interviews: three features were mentioned both in interviews and
focus group; three were exclusively mentioned in the focus group whereas four
were exclusively mentioned in the interviews. It is interesting to note that only
few minutes of focus group managed to produce a comparable number of ideal
features as fourteen individual interviews, showing how group dynamics enable
creative thinking.
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7.4.1 RQ1 – What is the interest of the ES industry in design-time
and run-time quality attributes, such as Maintainability, De-
pendability and Energy efficiency, and what tools, processes,
and practices are adopted to manage them?

To understand which quality attributes are the most important, we explicitly asked
practitioners to discuss and rank the quality attributes of interest in their projects.
We provide next some qualitative details on the quality attributes of interest along-
side the description of the tools, processes and practices used by the practitioners
for each quality attribute. We start with run-time quality attributes:

• Dependability includes Availability, Reliability, Security, and Safety, with the
first two being the highest priority in general. Availability and Reliability are
intrinsically dependent on each other and this aspect is reflected by the fact
that the same practices, such as software testing, flight simulations, flight
tests, and test-benches with simulated sensors, are adopted to enforce both
of them. There are also cases where not only Reliability and Availability are
highly connected, but also Safety, like in the case of flying drones, where the
inability to send commands to a drone could result in dangerous situations.
Let us discuss each sub-quality attribute separately:

a) Availability is safeguarded using different techniques, depending on
the domain of the project, such as: performance measurements with
different tooling, static analysis tools for bug identification (i.e. Cover-
ity6), test benches with simulated hardware, flight simulators, and log
inspection for pinpointing issues not identified automatically. In the
case of the medical project, it adopted multiple state-of-the-art design
principles to ensure no compromises over this quality, like for example
intentionally allowing an unlimited number of authentication attempts
to the implant device and exploiting energy harvesting techniques to
ensure the device does not consume all the battery while processing
them. Another example, was the offloading of all the operations related
to Security on a separate processor, so that the main one is completely
free to perform a specific medical task.

b) Reliability is closely related to Availability, so similar techniques and
tools are used to measure and assess its level. There were also cases
were Reliability (on its own) was a critical quality attribute and special

6See https://scan.coverity.com/.

https://scan.coverity.com/
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measures were adopted to enforce the quality. For example, in one case
the failure of a small percentage (of thousands) of remote sensors could
have a big impact on the company’s business; hence a sophisticated
logging system was developed in order to monitor, detect, classify, and
report every failure and facilitate a root cause analysis of the problem. In
another case, the subjects prepared a special test to ensure the reliability
of the connectivity of the system in extreme conditions, and live-tested
the product in conditions that it was not originally designed to work
in. The term Robustness was also used by some of the subjects with the
same meaning as Reliability (they used both terms interchangeably).

c) Security was of secondary importance, since most of the projects did not
manage any sensitive data. Among the projects that did have security-
oriented components, very few of them employed tools (e.g. BurpSuite7)
to statically check the code to identify possible vulnerabilities. In the case
of medical devices, were Safety is at risk if the Security of the device is
at risk, developers considered using verification tools and provers (such
as Tamarin Prover8, or AVISPA9) to check their implementation of the
ISO 9798 standard, however, they deemed it was not necessary for such
a simple protocol. As a final note, there was also a case were neither
encryption, nor any other security measure, was considered even though
the project involved data exchange over the network; this in contrast to
common practices.

d) Safety was not a major concern in most of the projects, as they did not
have to perform safety-critical operations. However, two of the projects
were safety-critical, and in those cases safety was strictly tied with other
qualities, such as Availability, Reliability, Security and Energy efficiency.
For example, in the medical implant project, where Safety is their mantra,
all four of these qualities were necessary to be guaranteed in order to
achieve the expected level of Safety from an implantable medical device
(IMD). Generally speaking, the interviewed practitioners, to enforce
Safety, employed techniques such as state-of-the-art design principles
(such as the ones mentioned for Availability), flight simulations, intense
testing and real-world flying tests.

According to the comments of some of the interviewees, Security and Safety

7See https://portswigger.net/burp.
8See https://tamarin-prover.github.io/.
9See http://www.avispa-project.org/.

https://portswigger.net/burp
https://tamarin-prover.github.io/
http://www.avispa-project.org/
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were the least prioritised. This fact is because, at the beginning of a project, it
is first more important to achieve a high level of Availability and Reliability
to be able to impress the management and the eventual customers. Thus,
they pay extra attention to such quality attributes first (namely, they prioritise
them), and then, later on, before delivering the product to the customer,
they focus on meeting all the Security and Safety requirements of the specific
domain the customer is operating in. This can be seen as a prioritisation w.r.t
time, rather than importance, i.e. Security and Safety are carefully taken care
of at a later stage and certainly before delivery.

Before moving on to the next quality attribute, we present, as an example,
how the results on this quality attribute were obtained through the chain
of evidence. The first piece of evidence is encountered in the coded data,
where Dependability had its own dedicated code (along with four children
codes, for its four sub-qualities). Next, all the Dependability-coded data
was summarised in a structured table that included also the other quality
attributes. Since the reporting is based on such tables, the chain of evidence,
from reporting to raw-data, is complete.

• Energy Efficiency at the software level was not at the top of the priorities in the
projects studied. On the other hand, energy efficient hardware and hardware
design were deemed much more important and prioritised. In many cases,
the main source of energy consumption was located in the hardware parts (i.e.
motors) or in the design of the hardware itself (e.g. FPGA and IMD design),
mostly ignoring the software part. At the software level, the most common
practice used to assess energy consumption is monitoring the computational
resources used by the software (CPU, memory, network, disk, etc.) or used
by the hardware managed by the software (e.g. sensors misuse). A similar
case, where resource usage and energy consumption are strictly tied, is when
a cloud back-end is required to manage the IoT infrastructure of the system.
In this case, practitioners saw the costs generated by the cloud back-end as
energy-related costs that critically impacted the business, and they used the
tools made available by the cloud service to guide their energy refactorings.

Finally, it is interesting to report that in one project, after a year of devel-
opment, it turned out that the intensive resource usage and sensor misuse
were causing excessive energy usage, which, along with severe architectural
issues, resulted in a complete rewrite of the system.

• Performance is especially important in HPC projects, where it is the main
driver for every decision made, practice and tool employed (especially at the
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hardware level). Regarding embedded projects, it is not of high priority, as it
mostly depends on the projects needs rather that having explicit performance
requirements imposed by the needs of the domain. Concerning the tools and
practices used to measure and monitor performance, two approaches were
mentioned often. The first one is the plain inspection of the logged times-
tamps, while the second one relies on dedicated tooling (such as VerySleepy10,
or built-in functions when available) to profile the execution time of the CPU
(and other resources). In general, resource usage is one of the key aspects of
decision making for speed, general optimisations and other decisions.

Concerning design-time qualities, we observed the following:

• Maintainability was a crucial aspect in most of the projects discussed. How-
ever, no team reported using dedicated tools to measure and manage it,
despite having to deal in most case with issues, such as code duplication and
magic numbers, that are easily detectable by modern tools. In fact, some
projects had experienced major maintainability issues due to accumulation
of technical debt; in one case, this eventually caused the bankruptcy of the
project [Ampatzoglou et al., 2015], forcing the team to rewrite the system
from scratch.

The most commonly-mentioned arguments for striving for high maintainabil-
ity include the addition of new members to the team (which may substitute
existing ones), the architectural complexity of some parts of the system (that
need to be easily understood despite their complexity), and the necessity to
support future changes, both at software and hardware level, not through
trial-and-error but by-design. Contrary to Dependability, Maintainability,
despite being deemed very important, it is often down-prioritized in practice
as it is an easy target for cutting corners (prioritisation w.r.t importance).

Some subjects mentioned certain programming practices that they follow in
order to increase Maintainability, such as coding rules, conventions, applying
design patterns, and common sense. Other subjects, from company C1,
explained how they employ documentation to transfer knowledge between
teams and from old projects to new projects, especially because the developers
working on those projects change very often (every 6 months on average).
That company works in the aviation sector, which is safety-critical, thus they
rely on source code comments and documentation to keep track of every hack
and optimisation made in the code. The documentation is then inspected

10See http://codersnotes.com/sleepy/.

http://codersnotes.com/sleepy/
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every time the code is transferred to new projects to be reused to ensure that
such hacks and optimisations do not cause any issues in the new project.

Lastly, it is worth mentioning that some sub-qualities of Maintainability men-
tioned by the subjects are Modularity, Readability, Flexibility, Reusability and
Understandability. None of them is monitored or measured in any way, sim-
ilarly as mentioned above for Maintainability.

• Extensibility plays an important role in many of the studied projects since
new functionality, new sensors, and new hardware in general, are required
to be added to the systems with minimal effort, and, in some cases, without
stopping the system. As in the case of Maintainability, several subjects stated
that they do not use any tool to measure or monitor this quality, but they
specifically address it up-front during design-time (at an architectural level).

• The ease of deployment (Deployability) on multiple platforms is a quality
attribute that is important only for certain types of projects. Specifically, some
companies need to deploy off-the-shelf systems on arbitrary hardware (e.g.
drones, FPGA), rapidly adapt them to the new hardware platform and extend
them with custom modules specialised for the specific tasks required by the
customer. A tool-chain developed in-house is used to automate the whole
process.

In another company, the continuous change forced by rapid technology ad-
vancements (every 6 months), and the high competition in the sector, require
continuous hardware upgrades in order for the company to remain competi-
tive. In such a scenario, the subject’s strategy was to keep the projects source
code as independent as possible from the platform on which it is deployed
on, so every time the hardware changes, the changes in the software are
minimised.

• System interoperability was also addressed by some of the subjects in order
to make the system compatible with several types of sensors for data collec-
tion, receiving input from controlling devices and sending data streams to
different devices (e.g. smartphones, central control stations).

7.4.2 RQ2 – What trade-offs between design-time and run-time
qualities do ES practitioners make?

To answer this question, we elaborate on trade-off experiences shared by the sub-
jects during the interviews and the focus group and on the rationale behind those
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trade-offs. We note that all these experiences had negative consequences on the de-
velopment activities. The subjects described a number of examples that are worth
presenting in some detail, as the context is of paramount importance to understand
the nature of the trade-off:

1. In this example, the goal was to optimise the saving times of the data on
disk. Specifically, the system had to manage a certain amount of data per
second which had to be permanently saved on disk. To this end, code main-
tainability was compromised by performing memory optimisations and by
trying different disk access strategies (e.g. bulk or individual record writes).
The subject was perfectly aware that such a change would reduce the Under-
standability of the code, but accepted the trade-off anyway. Later on, when
new measurement types had to be added to the data saved on disk, it turned
out that also the Extensibility of that part was diminished, making it very
time-consuming to add new data types to the main data structure saved on
disk. This trade-off was therefore very inconvenient for this participant as he
also said that “... all the structs11 needed to be rethought”.

This explicit trade-off between Performance and Understandability also con-
cealed a hidden implicit trade-off that negatively affected Extensibility. Over-
all, Maintainability was affected twice.

2. In this example, the system needed to access the DDR memory of the FPGA
in a more optimised manner so that the calculation could be accelerated.
The subject thus decided to re-organise the in-memory data representation
of the data itself in a tiled manner (e.g. data is separated into independent
logical sections that occupy different portions of the memory), rather than
as a monolith (e.g. data is one big continuous portion that occupies the
whole memory). This change caused the code that managed the memory
accesses to be much harder to understand and thus to change because the
tiled representation, despite being faster, required extra code for it to work.

This explicit trade-off entails reducing the Maintainability of the involved part
by incurring technical debt, in order to favour Performance.

3. The following example is a common practice reported by multiple subjects.
It involves Dependability and Maintainability, with the latter being explicitly
compromised in favour of the former in order to prepare the system for a
demonstration. The reason why Dependability – including Reliability and
Availability – are highly prioritised over other qualities in view of a demo

11Intendend as the struct data structure from the C++ language.
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is because they must go well and impress the managers or the customers;
for example, if the drone does not respond to the commands in the middle
of a presentation it is worse than losing battery life 30% faster (demos do
not last long enough to be impacted by battery). Most of the times, demos
also involve new functionality. Thus, often practitioners rush the code of
the features that are going to be presented to the customer, ignoring good
coding practices in order to implement the feature faster. Unfortunately, they
admitted that such smelly code is rarely fixed after the demo is completed.

This explicit trade-off is an example of how Functionality and Dependabil-
ity are highly prioritised over Maintainability, causing the project to incur
technical debt.

4. This experience refers to a practice commonly employed by teams that de-
velop multi-threaded systems. The system was originally designed using a
layered architecture to take advantage of its main benefits: high Modular-
ity and Portability. Over the years, the system kept steadily growing, with
new layers and concurrent tasks added, as new features or changes were
required. Eventually, the overhead introduced by the multiple architectural
layers influenced the execution time of every concurrent task at the point that
the tasks could not be completed within the time-slot assigned to them, thus
negatively influencing performance. To fix the issue, the developers started
to deliberately compromise Maintainability (incurring technical debt) by by-
passing the architectural layers to gain the speed necessary to complete the
tasks within the assigned time-slot. The performance gains were quite big,
since once a layer is bypassed, multiple instances can use the same link. The
big gain in performance encouraged them in repeatedly applying this hack
to improve performance.

This practice is an example of an explicit trade-off that damages Maintainabil-
ity in order to gain Performance. It is also an example of inherently trading
off Performance for Portability, as the extra layers allowing for Portability
eventually reduce performance.

5. This example concerns favouring the Deployability of the system over Per-
formance. It concerns projects that are being deployed within containers (e.g.
Docker). Even if the extra layer introduced by the container slows down the
system performance, the team accepts this explicit trade-off to avoid the effort
of deploying the system for several platforms.

6. The following example reports on a trade-off at design level with great impact
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on the end user’s experience. In this project, the system was meant to provide
easy and immediate access to accelerating the user’s scientific applications
through FPGAs. To achieve such a goal, the team designed a generic FPGA
model that was able to accommodate for roughly 80% of a typical user’s
needs. This flexibility was only possible by: (1) imposing some limitations
to the user’s control over some of the parameters that one can usually define
while working with FPGAs and (2) forcing a modular design of the system
at the cost of reducing performance. More specifically, as FPGAs require
to statically define everything during design-time, accounting for different
modules impacted on the potential performance that users could obtain by
running their application on FPGAs designed by themselves.

This trade-off was therefore explicit at the time of making the decision, sacrific-
ing Performance in favour of Modularity as the team developing the system
knew very well what were the consequences on Performance of providing a
flexible, accessible, and modular FPGA acceleration framework.

7. In this case, the system was supposed to provide a live streaming service over
a 4G connection to a remote endpoint over the network. However, when
the signal was weak, video quality was greatly affected. The development
team recognised that by adopting different encryption and authentication
algorithms depending on the quality of the signal, they could improve user
experience without sacrificing Security. This option was preferred over not
using any encryption and authentication at all, which would have simplified
Maintenance and improved user experience at the same time. Nevertheless,
the team decided to not sacrifice Security despite the extra code necessary to
implement the aforementioned solution and the overall complexity it intro-
duces.

The development team was not willing to sacrifice Security, and due to the
incoming release date of the project, it was necessary to fix the issue as soon
as possible. Hence, they decided to quickly fix the problem by ignoring
the effects on Maintainability. This was an explicit trade-off that sacrificed
Maintainability for Security and thus incurred technical debt. Interestingly,
the team admitted to often prefer Security over Maintainability.

8. This final example reports on a trade-off of Maintainability, more precisely
Readability, in favour of Testability. The subject intentionally introduced
a more complex, but also more advantageous accumulation methodology
of partial results over multiple execution cycles in different components of
the system. The advantage lies in an easier inspection of the system’s state
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Figure 7.4: Trade-offs between design-time and run-time quality attributes reported
by the subjects. Edge weights represent the number of trade-offs.

during simulation (i.e testing). Of course, the subject was clearly aware of
the consequences of this change over the Readability of the code.

Even though this is an explicit trade-off between two design-time qualities, it
is still interesting to report here in order to show the diversity of trade-off

decisions between qualities made in practice.

A summary of the quality attributes involved in the trade-offs reported above is
depicted by Figure 7.4.

One remarkable observation is that most subjects had difficulties identifying
the trade-off decisions they made, especially in the case of implicit trade-offs.
Additionally, some participants admitted that there may be trade-offs that they are
not aware of yet; these are both implicit and inadvertent trade-offs and are very
difficult to uncover.

7.4.3 RQ3 – What processes, practices, and tools do ES practition-
ers follow to support trade-off decisions?

The results indicate that no particular process (i.e. ATAM, AHP, QFD, ADD, etc.
[Barney et al., 2012]) is adopted when a decision that impacts both run-time and
design-time qualities has to be taken.

The decision-making process in the cases studied follows common sense and
normal intra-team interaction dynamics. Specifically, the following practices were
common among the studied cases. Since most of the projects studied are developed
by small teams, it is common for software architects to also write code and work
closely with other developers. Most of the decisions that imply a trade-off between
essential quality attributes are taken by the architects themselves, potentially in
consultation with other team members. However, when an important trade-off
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decision has to be made, the project leader is consulted in order to decide on how to
proceed. These cases usually concern the modification of a functionality that might
be of interest for the customer of the project (e.g. a change in the requirements).
Most of the teams do not consult external experts, but one of the teams reported to
occasionally do so, especially when dealing with complicated third-party libraries
impacting the performance of their code.

The subjects support their trade-off decisions by acquiring input from differ-
ent tools used to measure run-time metrics related to resource usage (i.e. CPU,
network, memory) and test results. Specific tools are occasionally used, but the
most common practice for measuring execution times, memory used, and network
usage is logging. Specific domain-related devices that are used as an important
input are flight and hardware simulators. Teams working on projects relying on
cloud services for managing their back-end use the resource monitoring tools to
pinpoint hot-spots and drive their decisions related to the code. The study par-
ticipants working in the HPC domain use an internal spreadsheet to estimate the
performances of the card based on the clock frequency and the characteristics of the
card design. We emphasise that all aforementioned tools are used to measure indi-
vidual qualities; there were no subjects using dedicated tools that manage trade-offs
between qualities.

The findings can be summarised by stating that the study participants adopt a
more lightweight and ad-hoc approach to deal with decisions rather than using a
particular decision-support method. By lightweight and ad-hoc we mean that they
do not use specific methodologies, but they rather do an educated choice based on
the data they have available, their own experience and of the other team members,
and of course customer feedback whenever available. The main reason is the
limited amount of time between releases (or demos), which forces them to directly
tackle the issues they are facing in the most rapid manner in order to continue the
development of the system and deliver the product to the customer.

7.4.4 RQ4 – What would be the ideal features of a tool supporting
quality attribute trade-off decisions?

The features hereby are originated directly from the ideas of the focus group and
interviewees participants, they range from very specific topics in trade-off man-
agement to the measurement of individual qualities. The next subsections report
on each category.
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Trade-off management

Concerning features related to trade-off management:

• A common demand was the possibility to select a quality attribute for which
the system should propose potential optimisations and highlight eventual
trade-offs arising from applying them. For example, the envisioned sys-
tem would propose changes that might improve the Maintainability level
of a particular class, showing the possible impact on, for example, energy
consumption for each proposed change. Similar analyses should also be sup-
ported for other quality attributes, such as Energy Efficiency and Security.
The rationale behind this requirement is to help practitioners increase a cer-
tain quality of the system and, at the same time raise awareness about the
impact on other quality attributes involved in the optimisation;

• The ability to register explicit trade-offs, especially in terms of accepting the
compromised qualities, was also deemed important. For example, tools that
perform continuous analysis of quality attributes, will keep issuing warnings
related to the diminished quality (because of the trade-off). Practitioners men-
tioned that they would like to turn such warnings off since it would not make
sense to address them: that would simply cancel the effects of the trade-off

decision. For example, by simplifying the cognitive complexity of a method,
thus easing maintainability, one might introduce energy inefficiencies. If this
optimisation was suggested and effected by the tool, then one should be able
to turn off the consequent energy warnings;

• Another interesting feature is the consequent impact of an applied opti-
misation on test coverage, or, more specifically, which tests have to be re-
executed. The rationale behind this requirement is that executing tests is a
time-consuming activity, thus, re-executing only tests affected by the applied
change would greatly influence the productivity of the developers.

• Concerning Energy Efficiency, some practitioners would be interested to
know what changes in the source code have a higher impact on the overall
energy drawn by the system. This kind of feature can be applied at refactor-
ings that focus on both improving Energy Efficiency and Maintainability, thus
highlighting possible trade-offs between run-time and design-time qualities.

Technical project management

Ideal features that relate to technical project management are listed below:
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• An important feature is the possibility to set a user-defined severity level for
each quality rule detected through static analysis, depending on the project
being analysed, and on the software component where the issue is detected.
The rationale behind this feature stems from the fact that different projects
require different quality levels. In fact, the concept of quality often depends
on the contract stipulated by the company and its customers. Hence, it is
important to allow the user to define the desired level of quality for each
project. For example, if the customer values Security, then security issues in
critical components can be given very high severity;

• The practitioners also expressed their interest in monitoring the extended
resource usage over a certain threshold defined by the user (e.g. software
uses CPU over 85% for more than 10 seconds). The rationale is that the
user wants to ensure that there is a margin for a potential growth12 of the
system. In particular, reserving a certain margin of the available resources,
such as memory or CPU time, for a potential future growth guarantees that
the functionalities offered by a device can be increased without requiring
hardware updates, thus extending the lifespan of the product. On top of
this, it is especially important in critical embedded systems that, in case of
malfunctioning, there are enough resources available to handle emergency
situations.

• In some cases, the remote parts of some systems rely on 4G network connec-
tivity to properly function. Practitioners working on these kind of projects
have expressed the need of estimating the data usage of their system in order
to have an idea of the (partial) cost of running the system. As the number of
remote sensors with embedded sim cards in the system increases, every bit
exchanged by a sensor has a higher impact on the final cost generated by the
system.

Monitoring quality attributes

The features related to monitoring quality attributes:

• Resource profiling (CPU, memory, disk, etc.) seemed to be very popular since
practitioners consider the quantification of run-time qualities (e.g. Reliability,
Performance, or Energy Efficiency) of interest to be of paramount importance;

12Note that this concept differs from Scalability for it is meant as an indefinite increase in the number
of features that the system is able to offer.
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• In relation with Energy Efficiency, an interesting but hard-to-satisfy need is
the automatic detection of possible optimisations of sensors and hardware
usage by the software. One example could be the number of frames per
second registered by a camera, which in case it is excessive and unneeded, it
negatively influences energy consumption;

• Technical debt monitoring is also appealing to some of the practitioners. In
particular, they deemed very useful to break down the overall technical debt
by associating specific technical debt items to individual software compo-
nents; this, in turn, helps to to better focus maintenance efforts.

Finally, there were also other, more generic features, such as security vulnerabil-
ity identification, bug detection, and weekly reports on design-time and run-time
qualities evolution.

7.5 Discussion

This study investigated how software engineers and architects, from different
companies from the embedded systems domain, prioritise and manage quality
attributes, (paying special attention to Maintainability, Dependability, and Energy
Efficiency) and the trade-offs among them.

The results from RQ1 indicate that the involved practitioners focus their de-
velopment efforts mostly on Dependability (more specifically, on Availability and
Reliability). Although they value Maintainability as a top-priority quality attribute
(as also identified by Bellomo et al. [Bellomo et al., 2015]), they fail to effectively
measure and monitor it with dedicated tools. Several factors could cause this
behaviour:

• practitioners often lack theoretical knowledge on how the tools calculate
metrics, what these metrics mean and how the metrics can be customised to
better fit their context. In addition they usually do not have enough insight
into the available tools (commercial or open-source) to be able to select the
one that fits them better;

• most projects have very short iterations that require developers to focus on
implementing functionality, while maintainability is not prioritised with the
reasoning of not having business value;

• practitioners often have a short-term perspective on a specific project e.g. due
to changing projects frequently. Thus the long-term sustainability of a project
is not an immediate concern for them;
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• the contract with the customer often does not explicitly concern architecture
or code quality, thus the company might not invest on it;

• and finally, due to lack of training or company culture, developers may
misunderstand or underestimate the shortcomings in maintainability.

The majority of the trade-off experiences mentioned by the subjects (reported
in RQ2) involve Maintainability as the compromised quality attribute whereas De-
pendability or Performance are favoured in most of the cases. This finding aligns
with what has been already reported by two other studies from the investigated
literature [Ampatzoglou et al., 2016, Feitosa et al., 2015]. It is worth mentioning
that the results of the three studies (this study, [Ampatzoglou et al., 2016] and
[Feitosa et al., 2015]) were obtained in different contexts, using different data col-
lection methodologies and data sources, while the similarities among them appear
to be particularly strong. Therefore, these results seem to generalise well increasing
the external validity of the studies.

Regarding the explicit or implicit nature of trade-offs reported in RQ3, the re-
sults from RQ2 indicate that the majority of the trade-offs can be considered explicit.
Through this observation alone, we could derive the conclusion that practitioners
are perfectly aware of almost all the trade-offs they make and the qualities involved;
yet, this would be a skewed view of reality caused by survivorship bias. That is
because practitioners do not thoroughly monitor most of the design-time quality at-
tributes – as emerges from RQ1 – and implicit trade-offs are harder to remember and
report. Hence, we conjecture that a significant amount of decisions entail implicit
trade-offs; especially those that incur technical debt due to un-monitored quality
attributes, such as Maintainability. As a result, the consequences of these implicit
trade-offs are usually only discovered when new functionality, or performance op-
timisations, are required to be implemented, causing the developers to pay technical
debt interest on that part of the code. The trade-off number one reported by RQ2 is
a clear example of this phenomenon.

Another common practice that frequently causes practitioners to incur technical
debt is the preparation for a demo. In general, this practice can be seen as incurring
deliberate, but prudent, technical debt [Fowler, 2014], since it is a conscious decision
made by the team in order to obtain a short-term advantage. One of the reasons
that we deem this as ‘prudent’, rather than ‘reckless’ [Fowler, 2014], is because
practitioners foresee very little interest probability on the parts of the system they
rush before the demo; a possible explanation for this behaviour could be that
customers might require a change involving that part of the system, so it might not
be worth at all spending too much time on it. This is reasonable since practitioners
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are required first and foremost to pursue customer satisfaction, rather than the
long-term sustainability of source code. However, there needs to be a concrete
strategy, after the demo, to monitor the incurred technical debt and strive to repay
it as soon as possible.

Considering the results obtained from RQ3, it is reasonable to wonder why
the subjects of the study do not use any specific process to support their trade-off

decisions. One possible explanation could be that, like most software engineer-
ing processes, those for managing trade-offs are not as well-known in industrial
practice as in the academic domain. Even if practitioners are familiar with such
processes, many of them require a non-trivial amount of time to learn, plan, and
eventually execute. In particular, the planning and execution overhead are rather
incompatible with the daily routine of a developer and strict deadlines that char-
acterise the industrial software domain, and, more specifically, the projects in our
study. Note that since implicit trade-offs can arise from any decision taken, it
could be necessary, depending on the case, to apply these methods on a daily basis.
Moreover, some of these processes involve multiple parties and project stakehold-
ers, thus requiring substantial effort and calendar time to apply these methods for
each decision; this does not align with teams following an agile software develop-
ment process. Also, a considerable amount of information concerning the system
is usually required, which may not always be available in a practical amount of
time, at the moment of making the decision.

An interesting aspect that emerges from the results is the prioritisation in man-
aging trade-offs. Pipelining every decision through a trade-off decision-support
process would add an excessive overhead; that would be counter-productive both
on the short and on the long-term. The only reasonable approach to manage trade-
offs is to rationally select decisions that require support based on the foreseeable
impact they have on the quality attributes of interest in the project, as well as po-
tential risks. However, this is easier said than done. Consider, for example, the
fourth trade-off experience uncovered by RQ2, where engineers could have ap-
plied a trade-off decision-making support process to avoid heavily compromising
on Maintainability and identify a new, more adequate, system architecture. They
realised that cutting corners (i.e. bypassing layers) is the easiest way to improve
performance, and did not bother considering eventual trade-offs since they were
able to gain huge performance improvements. These large gains were enough
of a reason for them to ignore long-term trade-offs, tackle their issue, and keep
developing the system.

The abovementioned considerations can be generalised to companies that de-
velop B2B (Business to Business) embedded system products that are meant to be
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sold to customers later on as personalised solutions. The development of these
products is done by teams that are small or medium sized (from 3-4 elements
up to 6-7) and which members work closely together, perhaps covering multiple
roles and wearing different hats depending on the development phase. Embedded
systems industry is forced by the market to move fast and innovate quickly, this
requires their teams to react quickly to changes. In this regard, smaller teams of
3-5 members have been found to be the sweet spot for productivity in relation to
the actual effort spent with a maximum of 9 elements by Putnam [Putnam, 1978].
Moreover, teams with less than 10 elements are also the most frequent teams in
software development [Rodrı́guez et al., 2012].

Finally, we summarise some of the implications of our study for practitioners
and researchers. Researchers now have a clearer view of the embedded systems
industry’s needs, practices, tools, quality attributes and trade-offs experiences,
that can be used as a foundation for future research or experimental tool devel-
opment. Furthermore, those interested in the practical aspects of technical debt
management, now have a better insight on common habits and decisions concern-
ing incurring technical debt (e.g. trade-offs and other practices from RQ2 and RQ3)
and repaying technical debt (e.g. right after a demo, when there are less uncertain-
ties and more time). Also, they have now more insights on implicit and explicit
trade-offs, which have not been studied before in the literature. Practitioners on
the other hand, can learn a lot from the reported experiences and the conclusions
drawn by this study in order to further improve their development processes. For
example, important decisions that involve quality attribute trade-offs should be
supported by adequate decision-making processes or practices that document the
qualities involved, keeping track of the decisions (e.g. using approaches proposed
by other authors [van Heesch et al., 2012, Falessi et al., 2011, Barney et al., 2012])
and the favoured and sacrificed qualities. Such documents can be subsequently
used to support future decisions. They can also become more aware of the impor-
tance to constantly monitor design-time quality attributes using dedicated software
(i.e. that monitors technical debt, like SonarQube) and make trade-offs explicit, to
the best possible extent.

7.6 Threats to validity

The present study is subject to limitations which can be categorised into construct
validity, external validity, and reliability following the classification proposed by
Runeson et al. [Runeson et al., 2012]. Internal validity is not a concern for this
study because we did not examine causal relations [Runeson et al., 2012].
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7.6.1 Construct validity

Construct validity concerns the degree to which a study measures what it claims
to be measuring [Runeson et al., 2012].

This study aimed at eliciting the knowledge of the practitioners in relation to a
specific goal, expressed as research questions. A case study protocol was carefully
designed to ensure that the questions of the interviews and of the focus group
were congruous with such a goal. Additionally, the protocol was reviewed by an
external reviewer to ascertain that indeed the data to be collected pertain to the
research questions.

A possible construct validity threat comes from the risk that not all participants
shared the same theoretical and technical knowledge of the high-level concepts
covered during the interviews. To address this threat, the interviewer ensured that
each interviewee was on the same track as the others about the meaning of the main
technical terms used throughout the interview by performing a brief explanation
before using any of those terms. The focus group participants received a similar
explanation both in written form, prior to the session, and verbally, during the
session. Moreover, two pilot interviews were performed, and continuous feedback
from the interviewed practitioners contributed to improving the clarity and the
scope of the questions asked in the remaining interviews. To avoid collecting
data unrelated to the initial goal, the interviewees were required to discuss only
projects respecting the criteria mentioned in Section 7.3.3. Finally, the possible bias
introduced by the two participants that took part in both interviews and focus
group was mitigated in two ways: first, the semi-structured format of the focus
group was driven by a pre-defined agenda and we ensured no participant would
cause us to deviate from that agenda; second, the session was moderated by an
experienced researcher who intervened whenever necessary. Thus, given these
two factors, the two participants could not mention or make reference to any detail
related to the interview that was yet not disclosed to the whole group.

7.6.2 External validity

External validity concerns whether the results of the study are generalisable to other
similar environments, so that the results obtained are useful in other contexts.
There are two possible generalisations viewpoints: concerning the subjects and
concerning embedded system fields.

Concerning the subjects, our study is based on data collected from several en-
gineers coming from multiple companies. The engineers have a different field of
specialisation and background, and their experience ranges from junior develop-
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ers to very experienced system architects (see Tables 7.3 and 7.4). This variety of
experiences covers a broad spectrum of embedded systems engineers, thus rep-
resenting, at least to some extent, the needs, the practices, and the tools used by
practitioners working in the embedded systems domain.

Concerning the teams, the data collected by this study is mostly focused on
small to medium software development teams. This limitation slightly reduces
the generalisations of the results, mostly from RQ3, to teams of similar sizes.
However, teams with less than 10 members are the most common teams in software
development, regardless of the main programming language (and thus platform)
used [Rodrı́guez et al., 2012], allowing these results to be applied to most teams.

Concerning the fields, this work discusses embedded systems that value De-
pendability, Performance, and Energy efficiency since most of the systems investi-
gated perform tasks that are critical, time-bounded, or extended in duration on devices
relying on batteries. The generalisation is however limited to companies that create
systems meant for other businesses rather than to the average consumer. Although
these kinds of systems are only a small sample of the overall embedded systems
population, the results obtained might be generalised to other domains that share
a similar set of important quality attributes, such as industrial automation devices
(Safety and Energy Efficiency), networking (Availability and Reliability), and sci-
entific and measuring tools (high Performance). However, one could argue that
the study is unbalanced towards the aviation domain, since most of our subjects
come from such a domain. Nevertheless, several quality attributes that are critical
in this domain are also critical in other domains considered; for example, Safety
and Reliability are crucial attributes both in the Automotive and in the Medical
implants fields. Additionally, we considered each company as an individual case
study subject, thus each company’s needs were weighted according to the case
study design, independently of the number of units of analysis they supplied for
the study.

We cannot claim that the results can be generalised to other embedded system
types, such as general consumer electronics, or machine learning applications,
because different qualities or device types are preferred in these fields.

7.6.3 Reliability

Reliability, in this context, refers to the degree to which the collected data depends
on the specific researchers collecting and analysing it (different researchers fol-
lowing the same case study design should yield the same data). To this end, a
replication package, containing the protocol and the questionnaires, is available
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online13, allowing other researchers to evaluate the rigor of the design or replicate
the study.

To guarantee the reliability of the findings, all the intermediary results were
reviewed by a second researcher during all the process of analysis and the analysis
was performed following a well-known qualitative data analysis method, namely
Constant Comparative Method [Boeije, 2002]. Additionally, the results were pre-
sented in front of at least one practitioner of each company that took part in the
study in order to ensure that the sources of the data agree with the findings of the
study and ensure their credibility.

7.7 Conclusions

Managing quality attribute trade-offs is a complicated activity that has a consid-
erable impact on the system’s behaviour and future sustainability. The embedded
systems domain is generally more sensitive to trade-offs among quality attributes
than other domains since they have strict requirements on performance, energy
and dependability. For example, small changes to the design or code of the system
might have an undesired impact on its run-time qualities.

By analyzing and understanding how the industry deals with trade-offs on a
day-by-day basis, it is possible to propose solutions that support the industry in
addressing this complicated problem. To this end, this work investigated the needs
and practices of the embedded systems industry on quality attribute trade-offs by
directly interacting with a number of practitioners through interviews and a focus
group.

A major finding from this study is that embedded systems engineers are in
great need for tooling that supports the monitoring of run-time qualities, but at the
same time indicates possible implications on design-time qualities of the performed
changes. Also, we found that practitioners rarely adopt tools for monitoring design-
time quality attributes; this behaviour causes them to overlook important trade-offs
that negatively impact the cost of the project in the long-term (i.e. incur technical
debt). Moreover, due to strict domain requirements, practitioners have difficulties
applying methods, or processes, for explicitly managing trade-offs among quality
attributes. Thus, they focus on the major run-time qualities, such as Dependability
or Performance, that satisfy customer needs.

As future research perspective, it would be interesting to investigate the actual
costs of trade-offs in a project and compare estimations of technical debt interest for

13Visit http://www.cs.rug.nl/search/uploads/People/repl-package-ds18.zip.

http://www.cs.rug.nl/search/uploads/People/repl-package-ds18.zip
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implicit and explicit trade-offs. Another interesting work would be to investigate
an empirically-calculated ratio of explicit versus implicit trade-offs, allowing one
to grossly estimate the hidden technical debt principal of a project using data of
past decisions.
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Chapter 8

Conclusions and Future Work

This chapter summarises the contributions of this PhD project and concludes the
dissertation. Section 8.1 revisits all research question and answers them according
to the findings of the respective empirical studies, highlighting the respective con-
tributions. Section 8.2 concludes the chapter by exploring future research directions
that stem from the work presented in this dissertation.

8.1 Research Questions and Contributions

The problem statement addressed by this dissertation is stated in Chapter 1 and
repeated here for convenience: The detection of architectural smells alone is not sufficient
for practitioners to take informed TD management decisions. Practitioners need to know
the amount of TD each instance amounts to, what the available prioritisation strategies
are, and the trend of the TD incurred over time. This information can help them better
implement TD repayment. To tackle this problem, we decomposed it into six research
questions (five knowledge questions and one design problem) and answered them
in Chapters 2 to 7. Each RQ addresses a particular aspect of the problem statement.

RQ1 addresses the lack of existing prioritisation strategies that can be used
by practitioners, and provides guidance on what types of smells are more severe
than others. Next, RQ2 allows us to better understand the needs of practitioners
and the current state of practice with respect to architectural smells management
in industry. Then, RQ3 collects information on the evolution of smells in a real
world industrial context, which can be used to refine the prioritisation strategies
reported in RQ1 for open-source systems. RQ4 addresses the relation of smells
with changes in the source code in order to understand the advantages of repaying
the ATD generated by architectural smells. RQ5 formulates a solution for the
quantification and monitoring of the amount of TD principal by also using the
results obtained from previous RQs. RQ6 addresses the knowledge gap of how
practitioners perform TD repayment and how prioritising other quality attributes
over maintainability affects TD.
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The upcoming paragraphs summarise the answer to each research question
based on the empirical evidence collected.

RQ1: How do AS evolve in open-source systems?

To answer this research question, we carried out an empirical study that investi-
gated how individual instances of architectural smells evolve over time and persist
within the system. To do so, we detected the architectural smells in 524 releases of
14 different Java projects. We also developed an approach to track each instance of
an architectural smell with its counterpart from the next version. This allowed us
to create a time series data set about architectural smell instances.

The findings showed that different smell types evolve in different ways; for
example, most cycles tend to stay constant regarding the number of elements
affected (size) but tend to increase in total number of instances. The opposite holds
for the Hublike Dependency (HL) smell, which tends to increase in size instead of in
number of instances detected. Cycle instances were also found to be less persistent
within the system, and after a few releases most of them might disappear1 as a
consequence of the changes done in the system.

Given these findings, we deduced general prioritisation rules:

1. HL smells should be addressed before cycles because individual cycle instances
are less likely to affect maintenance effort (i.e. TD interest) on the long term;

2. refactoring should not focus on CD instances that were recently introduced
as many CD instances are likely to disappear in the next releases. This
confirms state of the art findings that many CD instances are not critical
[Al-Mutawa et al., 2014];

3. not all CD instances have the same severity, while some instances may be
intentional. Refactoring activities should prioritise complex shapes that affect
central parts of the system as they are more likely to incur extra maintenance
effort.

The contributions compared to the state of the art are as follows: this is the first
study to look at the evolution of individual architectural smell instances and at their
survival probability within the system. Additionally, it is also the first to deduce
general prioritisation rules among the smell types considered in the study.

1Note that cycles are replaced by different instances involving the new classes and packages added
to the system.
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RQ2: How are AS perceived by industrial practitioners?

This research question was investigated by an empirical study. In this case, how-
ever, instead of mining and analysing software repositories, we interviewed 21
software engineers and architects on their experience with AS. The data collected
through the interviews gave us an insight on how practitioners perceive AS, how
they introduce them as well as the maintenance and evolution issues related to
smells.

The results showed that practitioners perceive the God Component (GC) smell
as a common cause of maintenance issues, mainly as a result of the high level of
complexity that characterizes its instances. Cyclic dependencies were perceived
as less detrimental than GC, especially among practitioners working with Java
systems. A similar opinion was given about the HL smell. Practitioners expressed
their concern about change ripple effects associated with the UD smell, but they
also reported that this smell type (which theoretically is responsible for an increase
in change rate in the system) is rather hard to understand and not very intuitive.

HL and GC smells seemed to be the most commonly labelled as intentionally
introduced, although practitioners also mentioned that they grew larger in size than
what was intended. This resulted in practitioners being reluctant to refactor them.
CD instances were instead attributed to bad initial design decisions that resulted
in the introduction of cycles, which made them easier candidates for refactorings.

Another interesting finding is that practitioners perceived the presence of AS,
in most cases, as a “necessary evil” in order to be able to meet deadlines and budget
limitations. This shows that practitioners are aware and well-informed about good
design practices, but they struggle following them diligently. It also confirmed
that the problem statement is relevant to practitioners and that they require further
support to manage AS.

The novelty of this study is that it is the first to report on the opinion of software
practitioners on architectural smells using one-to-one, in-depth interviews as the
main data collection method with the participants belonging to different companies.
Previous studies used focus groups only and focused on a single company only.

RQ3: How do AS evolve in industrial embedded systems?

To answer this research question, we designed an empirical case study in an in-
dustrial setting. This study differs from the one performed to answer RQ1 because
it includes both quantitative and qualitative data. Moreover, it focuses on C/C++

industrial embedded systems rather than Java systems. In the study we analysed
over 20 millions lines of code, 30 releases, 9 projects, and interviewed 12 software
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engineers and architects.
The findings derived from the quantitative analysis showed that most CD in-

stances follow rather different growth patterns that those observed in open-source
systems, with a large percentage of CD instances that grow in size over time rather
than in number, thus becoming more severe. Cycles were found to be precursors of
other smells, whereas HL smells were found to be the most common successor type
of smell. Moreover, CD were found to be very common in GC smells, as more than
85% of CD instances co-occur with GC instances. GC instances instead seemed to
be least co-occurring with HL smells , with only 10% of GCs co-occurring with HL
instances.

The findings of the qualitative analysis highlighted that practitioners are aware
of the presence of smells and can use intuition to pinpoint the problem but they need
assistance in tracking and quantifying their presence deterministically. Moreover,
practitioners also mentioned that change propagation to unknown parts of the
codebase is one of their main struggles during typical maintenance activities. These
issues were especially associated with the components affected by smells.

The novel contributions of this study compared to the state of the art are as
follows: it is the first to present the evolution of individual AS instances in industrial
systems. Additionally, this study also focuses on C/C++ programming languages,
which is rare to see in the literature as most studies use Java instead. It is also the
first study that provides a double perspective on the evolution of the smells in a
single paper: the perspective from mining software repositories, and the opinion
of the practitioners that worked on the code analysed.

RQ4: How do AS correlate to changes in the source code of the system?

To investigate this research question, we set up an empirical study to analyse 31
Java projects for a total of over 3,900 commits. The analysis compared the frequency
and size of changes in affected and non-affected classes and packages. To do so,
we used several different statistical tests while also controlling for the confounding
factor of the size of the project, classes, and packages.

The results show that in 82% of the analysed commits the proportion of smelly
artefacts that change is consistently higher than non-smelly artefacts that change.
Medium and large artefacts that are affected by smells are naturally more likely to
exhibit this difference in change frequency than small artefacts. Similarly, artefacts
that exhibit changes are also more likely to have more smells than artefacts that
have fewer smells, regardless of the size of the artefact. Artefacts with smells
were also found to have larger change size (code churn) than non smelly artefacts,
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with the effect being more noticeable in larger artefacts. Finally, when a smell is
introduced to an artefact, the change frequency of the artefact increases afterwards.

While these findings do not provide evidence that architectural smells are di-
rectly responsible for an increase in the frequency of change of the artefacts affected,
they do confirm that the presence of architectural smells indicates the presence of
hotspots in the design and code of the system.

Compared to the state of the art, this is not the first study that analyses the
correlation between AS and source code changes. However, it is the first that
provides a comprehensive analysis of the relation between changes and smells
by looking not only at frequency of change, but also at the size of the changes
and how the introduction of a smell instance affects the changes of a specific
class/package. Moreover, it includes 31 systems in the analysis, making the findings
more generalisable, as most other studies had analysed 20 systems at maximum.

RQ5: Design an approach to estimate the technical debt principal generated by
AS

This research question represents a rather complicated problem to solve, that re-
quired solving first two design sub-problems: (1) how to calculate the severity of
an architectural smell, and (2) how to quantify the effort to remove a smell.

To solve the first design problem, we designed a machine learning model that
ranks architectural smells based on their severity. This required first to create a
data set that comprised examples of smells instances with different severity. The
data set was manually annotated using the findings from RQ1 to RQ4 (and the
state of the art) as guidelines.

To solve the second design problem, we used the number of lines of code that
are responsible for the presence of the smell, and therefore must be understood
and changed by the developer. This solution ultimately resulted in a static analysis
tool that precisely calculates these values.

Finally, we combined the two solutions to calculate the ATD index and designed
a case study to validate our approach. In total, we interviewed 16 practitioners,
9 that worked on open-source projects (either full-time or as a hobby) and 7 from
two companies. From the interviews, it emerged that practitioners agreed with
the estimations provided in 71% of the cases and that these were representative of
the effort necessary to refactor a smell. Moreover, they also mentioned that TD
repayment was not always an option for them as it would force them to make a
trade-off that they were not willing to.

The main contribution of this study compared to the state of the art, is that it
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is the first study that uses machine learning to solve this problem. The advan-
tage provided is that our approach does not require manually-set thresholds or a
benchmark of systems to perform the estimations of TD principal. Additionally,
our approach is the only one validated through an empirical study that involves
practitioners from both industry and open-source systems.

RQ6: How are trade-offs between quality attributes currently managed in in-
dustry?

We answered this research question by conducting a case study, set up in an
industrial setting. To collect the necessary data, we performed two rounds of
interviews and a focus group. In particular, during the first round we interviewed
8 practitioners from 3 different companies operating in the embedded systems
domain. Then we performed a focus group with 8 more practitioners from 4
companies, 3 of which were the same from the interviews. We concluded the
data collection with the second round of interviews, where we performed 6 more
interviews. In total, we consulted 21 software engineers and architects.

The results showed that practitioners prefer prioritising run-time qualities (e.g.
performance, availability, etc.) over design-time qualities (e.g. maintainability,
testability, etc.) citing, as the main reason, domain aspects (e.g. extreme perfor-
mance optimisation) and business aspects (e.g. demos, deadlines), which take pri-
ority over code and architecture quality. Practitioners also mentioned how some
of these trade-offs backfired eventually, hampering their ability to meet existing
performance requirements or deliver new functionality on time.

The main novelty of this study compared to the state of the art is that it is the
only one that reports examples of actual trade-offs among quality attributes from
an industrial setting.

8.2 Future Work

The work presented in this thesis provides several opportunities for future work.
We group these opportunities into three main research branches: (1) impact of
architectural smells on maintainability; (2) impact of architectural smells on other
quality attributes; and (3) refactoring support for architectural smells.



8.2. Future Work 239

8.2.1 Impact of architectural smells on maintainability

One opportunity for future work lies in continuing to study the impact of architec-
tural smells on the maintainability of the system.

While this thesis has proposed an approach to calculate technical debt principal
based on architectural smells, we still lack a way to estimate the amount of technical
debt interest2 generated by architectural smells. Namely, to calculate how much
“extra work” is done because of the presence of architectural smells. By using
technical debt interest, one can calculate the “breaking point”, i.e. when the amount
of interest that is being paid is larger than the cost to fix all the issues in the system.
For instance, if in one year one pays more on TD interest than the cost of refactoring
the system in the same amount of time, then it would be more convenient to pay
back the debt. This would allow practitioners to plan ATD repayment activities
more efficiently. Additionally, by using TD interest, practitioners can decide to
focus refactoring activities only on the parts of the system where the most interest
is paid.

Another example of future work is studying how changes propagate within
and outside an architectural smell. In particular, it would be interesting to study
what exactly happens when a component affected by a smell changes, and whether
the change is propagated to the adjacent components that are not smelly, or to the
other components that are part of the same smell. To study this aspect, however,
it is necessary to detect co-changes3 very precisely. This type of study can help
practitioners predict the files that need to be changed after applying a change to
another file.

8.2.2 Architectural smells’ impact on other quality attributes

An interesting line of work is to study the impact of architectural smells on quality
attributes other than maintainability.

Previous work has found that lower maintainability levels are associated with
higher energy consumption [Papadopoulos et al., 2018]. An interesting future
work would be to study whether the presence of architectural smells compro-
mises energy efficiency. More specifically, it would be interesting to study if the
refactoring of architectural smells would decrease the energy consumption of the
system. The easiest way to study this would be to refactor one architectural smell

2Also known as the cost of keeping the current solution as is.
3Defined as when two files change together, either simultaneously in the same commit or con-

currently in two different commits but with a precise pattern (e.g. file A always changes before file
B).
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instance, measure the impact on energy consumption, restore the system to the
original state, refactor a different smell instance, measure again energy consump-
tion, and then keep repeating the process. However, this methodology still poses
several challanges as one can fix the same smell in multiple ways, each impacting
energy consumption differently. Moreover there are several variables that influ-
ence the energy consumed by a machine, so one must remove as much noise as
possible.

Other trade-offs that could be investigated are whether the presence of archi-
tectural smells increases the chances of detecting security flaws in the affected
components. Intuitively, the presence of smells makes the code harder to compre-
hend, therefore, it is more likely that developers introduce a vulnerability flaw or
fail to detect one. A simple way of doing this would be to use the vulnerabilities
that are certified to be present, then use a historical analysis and see if, over time,
they tend to appear more in components that are affected by smells than in com-
ponents than are not (similalry to what done for source code changes in Chapter
5).

8.2.3 Refactoring support for architectural smells

An interesting opportunity for future work is studying how architectural smell
instances can be refactored automatically. This is a rather ambitious research
direction that may not even be completely feasible. However, even providing
developers with partial refactoring solutions that can be used as a starting point to
design a complete solution would be, by itself, of substantial help. The advantage
of such a solution is simple: if refactoring becomes easier for practitioners to apply,
then they will be more prone to adopt techniques to manage ATD. A first step
towards implementing this solution would be to try and solve the problem from
a structural point of view only. For instance, one can divide a complex smell into
smaller parts that can be individually solved through well-known solutions (e.g.
dependency inversion). Then, a solution for the refactoring of the whole smell can
be found by searching all the possible solutions that solve the individual, smaller
parts while also requiring the minimum amount of changes. Search-based software
engineering techniques have matured quite a lot over the past decades, and would
be a perfect fit to solve this problem.
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Supplementary material for Chapter 3

A.1 Interview Guide

• Start of the interview [3 min]

– Introduce yourself, your job, and your goal

– Briefly mention what this interview is for and disclaimer on how their
responses are used and that the interview is confidential

– Mention that he is free to expand on any topic or anecdote

– Ask permission to record

– Start recording

• Background information [3 min]

– What is your current official position?

– What is your role in your team? (day-to-day tasks example)

– How many years of experience do you have in the current position and
in total?

• Explanation [3-5 min]

– Explanation of Architectural Smells and negative effects on maintenance
activities (concise and stick to literature)

• RQ1 questions [5 min]

– Which of these smells are you already familiar with, from your work?

– How many of them are there in the system you currently work on?

– What types of smells do you think are the most important in your case?
Why?

• RQ2 questions [5 minutes]
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– What types of smells do you deem to be more detrimental for the Main-
tainability of the system? How are they detrimental?

– Can you remember experiencing any issue while maintaining a
class/package that could be related to an architectural smell?

– In your project are there obstacles to the implementation of new features
that you think are related to architectural smells? If yes, can you tell us
about these obstacles?

• RQ3 questions [5 minutes]

– Did you try to refactor the part involved in the smell? If yes, how did
you do it? If not, why?

– Are there any practices in your team to manage the smells and their
consequences?

– Are you using any tools to monitor architectural issues (or at least de-
pendency analysis)?

– If yes, why did you choose that tool in particular? If not, are you aware
of such tools that you would consider using?

– What do you think is the ideal (imaginary) tool that could handle archi-
tectural smells issues?



Appendix B

Supplementary material for Chapter 4

B.1 Interview guide

This section lists the questions for the steps listed in the outline. Total duration of
the interview: 35 minutes max.

Introduction (3 min.)

1. Introduce yourself, your job, and your goal.

2. Briefly mention what this interview is for and disclaimer on how their re-
sponses are used.

3. Feel free to expand on any topic or anecdote.

Background information (2 min.)

4. What is your current official position?

5. What is your role in this project? (day-to-day tasks example)

6. How many years of experience do you have in the current position and in
total?

Results presentation (8 min.)

7. Share screen.

8. Explanation of Architectural Smells and negative effects on maintenance ac-
tivities (concise and stick to literature)

9. Explanation in detail of each section of the report by going through each table
and plot.
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General (2 min.)

10. General insights emerging from the analysis

(a) What are one negative and one positive aspects about the FC that
emerged after inspecting the architecture analysis results?

RQ4 (10 min.)

11. Importance of smell types and characteristics

(a) What type of smell do you think is the most important in your case?
Why?

(b) For each smell type we calculate specific metrics (called smell charac-
teristics), which one, for each smell type, is of most interest for you?
Why?

12. Perceived and actual quality of the system

(a) Did your perception of the quality of the components change after in-
specting the results? How/Why not? If yes, can you make an example?

(b) Does the presence of smells confirm what you already knew?

(c) Do the smells affect parts of the system that you were expecting to have
issues with? Why/How come?

(d) Are there any missing parts in our analysis?

RQ5 (10 min.)

13. Impact of smells on Maintainability

(a) What types of smell do you deem to be more detrimental for the Main-
tainability of the system?

(b) Can you give an example of an issue you experienced while maintaining
a component affected by a smell?

(c) Do you think it was related with the presence of a smell?

(d) Would it be hard to fix these issues? What aspects of the smell make it
hard to do so (size, affected elements, overlaps)?

14. Impact of smells on Evolvability (e.g. how easy it is to implement new
features)
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(a) How have these issues affected the Evolvability (implementation of new
functionality) of the affected parts?

(b) (If not answered before) Do you remember any issue hindering the
addition of new features to any of the components affected by smells?

(c) Have you been discussing specific obstacles for the implementation of
new features?

15. Possible remediation strategies

(a) What would be a possible quality-improvement plan that you could
implement based on the information acquired from this report? And
what would help you implement it?

(b) Do the results help you prioritising the issues to fix? If yes, how/why?
If no, what could help?

Feedback (2 min.)

1. General Feedback on the results

(a) What view provided you with the most valuable insights (Smell charac-
teristics, Dependency graph, DSM)? Why?
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